
In Signal Processing, special issue on image and video coding beyond
standards, 82 (11): pp. 1581–1593, Nov. 2002.
http://ltswww.epfl.ch/~dsanta .

1

Coding of 3D virtual objects with NURBS

Diego Santa-Cruz and Touradj Ebrahimi

Signal Processing Laboratory
Swiss Federal Institute of Technology, CH-1015 Lausanne, Switzerland

E-mail: {Diego.SantaCruz,Touradj.Ebrahimi}@epfl.ch

Abstract

With the advancement of computer graphics in the recent years, an increasing num-
ber of pictures, video and 3D content is generated by synthesis processing rather
than acquired with capture devices such as cameras or scanners. Several techniques
have been developed for compression of discrete (i.e. piece-wise planar) 3D mod-
els, in the form of 3D polygonal meshes. However, no important attempt has been
made to compress the smooth surfaces of artificially generated 3D models, that are
most often represented as parametric surfaces, of which Non-Uniform Rational B-
Spline (NURBS) is a popular form. This paper presents a method for compressing
NURBS 3D models with a small and controllable loss. The scheme uses a differ-
ential pulse coded modulation (DPCM) coder with different predictors for knot
values and control points, coupled with a uniform scalar quantizer, followed by a
bitplane arithmetic entropy coder. The multiplicity of knots is preserved by the use
of a multiplicity map. The rate-distortion characteristics of the proposed scheme
are evaluated on various models. When compared to MPEG-4 [8,9] and Touma-
Gotsman [19] compressed triangular meshes, the proposed scheme achieves more
than five times better compression, for equivalent L2 error and much better visual
quality.
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1 Introduction

With recent progress in computing, algorithmics and telecommunications, 3D
models are increasingly used in various multimedia applications. Examples
include visualization, gaming, entertainment, and virtual reality. From a com-
pression point of view, the use of 3D models has been extensively studied in
the context of model based coding. In such an approach, when compressing
a video captured by a camera, for instance, an analysis module attempts to
model the scene under consideration as a set of (generally) 3D models. This
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can be seen as an inverse projection problem. Once this task is successfully
fulfilled, instead of coding the image sequence from the video, represented as a
set of pixels and their motions, the parameters of the model extracted from the
scene are coded. It is believed that if the analysis module is efficient enough,
the total cost of coding (in a rate distortion sense) will be greatly reduced.
The relatively poor performance and high complexity of currently available
analysis methods (except for specific cases where a priori knowledge about
the nature of the objects is available), has refrained a large deployment of
coding techniques based on such an approach. Progress in computer graphics
has changed this situation. In fact, nowadays, an increasing number of pic-
tures, video and 3D content are generated by synthesis processing rather than
coming from a capture device such as a camera or a scanner. This means that
the underlying model in the synthesis stage can be used for their efficient cod-
ing without the need for a complex analysis module. This will also open the
door to many applications enabled by other features offered by this approach.

On a parallel but related path, the way we consume audio-visual information
is changing. As opposed to recent past and a large part of today’s applications,
interactivity is becoming a key element in the way we consume information. In
the context of interest in this paper, this means that when coding visual infor-
mation (an image or a video for instance), previously obvious considerations
such as decision on sampling parameters are not so obvious anymore. To be
more clear, let us provide an example. In a conventional digital video coding
problem, the sampling (i.e. number of pixels in the image) mostly depends
on the display resolution. Knowing the resolution of the display, there is no
need to acquire and then to code a signal with sampling characteristics beyond
those that the display is capable of reproducing. In an interactive environment,
this is not true anymore. Even using a conventional display with, for instance,
a resolution of 300 × 400 pixels, one could request to examine more closely
(and therefore display) an object in a scene. This means that because of in-
teractivity, the representation used to code the scene should allow the display
of objects in a variety of resolutions, and ideally up to infinity. One way to
resolve this problem would be by extensive over-sampling. But this approach
is unrealistic and too expensive to implement in many situations. The alterna-
tive would be to use a resolution independent representation. Unfortunately,
as far as 3D model coding is concerned, because of technological limitations
in todays products, a sampling should be performed prior to display. Such
a rendering includes discretization of 3D model objects. In particular, often
continuous surfaces in objects are simplified into planar discrete portions, usu-
ally in form of connected triangular faces. This operation produces 3D meshes
with other properties assigned to them such as colors, normals, textures, etc.
Numerous techniques to efficiently represent and compress such meshes have
been investigated [1,12,15,2,19] and even standards have been produced, such
as MPEG-4 version 2 [8,9]. There has not been, so far, an important attempt
to efficiently compress continuous 3D models, such as those obtained by para-
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metric surfaces, which are among popular approaches to synthetise 3D objects.
This paper proposes a solution to overcome this gap.

Many schemes for representing parametric surfaces exist, of which Non-Uni-
form Rational B-Spline (NURBS) patches [17] is one of the most popular.
NURBS patches are a common tool for surface modeling, popular in CAD
and virtual character generation, among others. NURBS have been already
proposed for inclusion [6] in the Virtual Reality Modeling Language (VRML)
standard [7], but in an uncompressed form. In this paper we propose a method
to efficiently compress 3D models made of NURBS surface patches, with a
small and controllable loss. In section 4 it is demonstrated that while the
technique is relatively simple very good compression is obtained. In addition,
the results show that the proposed scheme compares, from a rate-distortion
point of view, very favorably to compressed triangular meshes, with the added
benefit of retaining the resolution independence of the original parametric
model.

2 NURBS patches

There is a variety of different schemes for representing NURBS surface patches.
However the most common is tensor product. Other popular schemes are
Bézier triangles, Coons and Rational Boundary Gregory (RBG) patches [14].
Due to the popularity and flexibility of tensor product patches, we restrict the
discussion to those. In the following we will briefly review B-Spline functions,
tensor product surfaces and NURBS patches. A detailed description of these
concepts can be found in [18,5].

A tensor product surface S(u, v) is defined as a mapping from a region of R
2

into Euclidean E
3 space. Its general form can be expressed as:

S(u, v) =
n∑

i=0

m∑

j=0

fi(u)gj(v)Pi,j (u, v) ∈ [umin, umax]× [vmin, vmax] (1)

where Pi,j is a set of (n + 1) × (m + 1) points in Euclidean E
3 space, re-

ferred to as control points, {fi(u)} and {gj(v)} are two sets of univariate real
valued functions, and u and v are the two independent parameters. The do-
main of definition in the parametric space is a rectangle and the topological
arrangement of the control points is a rectangular grid.

For NURBS the basis functions are the B-Spline functions. Given U = {u0, . . . , ur},
a non-decreasing sequence of r +1 real numbers (i.e. ui ≤ ui+1, 0 ≤ i ≤ r− 1),
the ith B-spline function of pth degree (order p + 1), denoted by Ni,p(u), is
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defined, recursively, as

Ni,0(u) =







1 if ui ≤ u < ui+1

0 otherwise
(2a)

Ni,p(u) =
u− ui

ui+p − ui
Ni,p−1(u) +

ui+p+1 − u

ui+p+1 − ui+1
Ni+1,p−1(u) (2b)

where the quotient 0/0 is defined to be zero. The ui values are called knots,
and U is the knot vector. Note that knots can have a multiplicity higher than
one.

A polynomial B-Spline tensor product surface of degree p and q in the u and
v directions, respectively, is thus defined by eqn. (1), where fi(u) is replaced
by Ni,p(u) and gj(u) is replaced by Nj,q(v). The U and V knot vectors have
r + 1 and s + 1 knots, respectively, where r = n + p + 1 and s = m + q + 1.
The domain of definition becomes (u, v) ∈ [up+1, ur−p−1] × [vq+1, vs−q−1]. A
NURBS or rational B-Spline surface is obtained by considering a polynomial
tensor product surface in projective P

4 space, which is then projected to affine
E

3 space. The resulting expression is thus

S(u, v) =
n∑

i=0

m∑

j=0

Ri,j(u, v)Pi,j

up+1 ≤ u≤ ur−p−1

vq+1 ≤ v ≤ vs−q−1

(3)

where Ri,j(u, v) are the rational B-Spline functions of degree p and q, given
by

Ri,j(u, v) =
Ni,p(u)Nj,q(v)wi,j

∑n
k=0

∑m
l=0 Nk,p(u)Nl,q(v)wk,l

(4)

and wi,j is the homogenizing coordinate, or weight, of control point Pi,j. That
is the homogeneous coordinates of Pi,j are (wi,jPi,j, wi,j), with some abuse
of notation. Note that, strictly speaking, a NURBS surface is not a tensor
product surface once it has been projected to affine space.

The rational basis functions are well defined (i.e. the denominator is non-
zero) over the domain [up+1, ur−p−1]× [vq+1, vs−q−1] provided that all weights
are non-zero and of the same sign. This is because of the non-negativity and
partition of unity properties of the B-Spline functions {Ni,p(u)} [18]. In the
following it is assumed that wi > 0 ∀ i, for all NURBS surfaces. In practice,
this restriction is of very little importance, since all but the rarest design
systems produce NURBS with positive-valued weights only. The effect of a
weight wi,j is to move the surface S(u, v) closer or farther away from control
point Pi,j. The surface is farthest for wi,j → 0 and closest for wi,j → ∞, in
which case S(u, v)→ Pi,j for (u, v) ∈ [ui, ui+p+1) × [vj, vj+q+1). Note that, in
general, control points do not lie on the NURBS surface they define, although
the control polygon approximates the surface.
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NURBS surfaces posses several interesting properties. Those necessary to the
discussion are outlined below. For a complete list as well as their proofs, the
reader is referred to [18].

The parametric continuity of a NURBS surface S(u, v) is always C∞, except
at knot values. At a u knot of multiplicity k it is C (p−k) in the u direction.
Analogously, at a v knot of multiplicity k it is C (q−k) in the v direction. The
geometric (i.e. visual) continuity is however not entirely determined by para-
metric continuity. At a knot, it can be increased by placing the control points
in a special way, or decreased by using multiple coincident control points.

The first and last knots of any knot vector have no influence on a NURBS.
In fact, given a knot vector U with r + 1 knots, it is possible to modify the
values u0 and ur without affecting the NURBS, provided that the new knot
vector is also a non-decreasing sequence of real values. Furthermore, the knot
vectors can be normalized to the [0, 1] range without modifying the shape of
a NURBS surface, and without modifying its control points.

2.1 Typical knot vectors

Knot vectors define the basis functions of a NURBS surface. Besides being a
non-decreasing sequence of real numbers, there are no additional constraints
on knot vectors. However, several typical classes can be distinguished that are
useful for our purposes:

• Clamped knot vectors, where the multiplicity of the first and last knots
equals the order of the B-Spline function. That is, for the u direction,
U = {a, . . . , a

︸ ︷︷ ︸

p+1

, up+1, . . . , ur−p−1, b, . . . , b
︸ ︷︷ ︸

p+1

}. For a NURBS surface which has

clamped knot vectors in both directions, the corner control points coincide
with the corners of the surface.
• Uniform knot vectors, where all the knots are uniformly spaced. That is

ui+1 − ui ≡ c for i = 0, . . . , r − 1.
• Clamped uniform knot vectors, where all the interior knots of a clamped

knot vector are uniformly spaced.

Due to their special properties clamped and/or uniform knot vectors are used
very often in designing NURBS surfaces. This fact will be exploited in the
proposed coding scheme.
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(a) (b) (c)

Fig. 1. NURBS models: (a) rendered surface of goblet, (b) control points and polygon
of goblet, (c) rendered surface of pencil.

2.2 Example

In order to facilitate the understanding of the concepts introduced above, a
brief example is provided. Figure 1a depicts the 3D model of a goblet, made of
a single NURBS patch. This example clearly shows the flexibility of NURBS
for representing surfaces: while the top of the goblet is a surface of revolution,
the bottom features creases and a square base, yet the entire goblet is made
up of a single NURBS patch. The patch is of degree two and three in the u
and v directions, respectively. The 189 control points, which are also shown in
figure 1b, can be organized in a matrix of 9 lines and 21 columns. Lines and
columns correspond to the v and u directions, respectively. The v direction is
parallel to the axis of the goblet, while the u is perpendicular to it. The knot
vectors are as follows:

U = {0, 0, 0, 0.25, 0.25, 0.5, 0.5, 0.75, 0.75, 1, 1, 1}

V = {0, 0, 0, 0, 0.05, 0.1, 0.124, 0.15, 0.2, 0.225, 0.25, 0.3, 0.325, 0.348,

0.423, 0.494, 0.564, 0.585, 0.618, 0.684, 0.805, 1, 1, 1, 1}

One can see that both knot vectors are clamped, and thus the corner of the
patch and the corner control points coincide. The homogeneous coordinates
of the control points in the last column of the control point matrix are
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These points correspond to the top edge of the goblet. It is easily seen that
they lie on a square. However, the shape they describe is a circle. This is
achieved by giving a weight of 1/

√
2 to the points at the corner of the square.

Note also that although the parametric continuity at the double knots of U
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is C0, the geometric continuity is C∞, since it is a circle. This is due to the
special placement of the control points. As is the case for the control points
shown above, the first and last control points of each column in the control
point matrix are the same. This coupled with the fact that the U knot vector
is clamped, makes the surface closed in the u direction.

Figure 1c shows the much more complex pencil model. It is made of 11 rational
and 6 non-rational NURBS patches and only clamped uniform knot vectors.
The patches are of degree one and two, counting a total of 2514 control points.
The largest patch has 203× 9 (i.e. 1827) control points.

3 Coding scheme

In the following a powerful yet simple coding scheme for NURBS patches is
presented. The knot vectors and control points are handled independently but
in a similar manner. The basic building blocks are prediction, quantization
and entropy coding, as depicted in figure 2. As shown in the figure, knots
and control points are predicted differently. It is assumed, without loss of

knot
predictor

control pnt.
predictor

NURBS
control points

NURBS
u, v knots

entropy
coder

Ei,j

δi,j

εi

∆c

∆w

ζi

Qi,j

∆k

ξi,j

bitstream

Fig. 2. Simplified block diagram of NURBS coder. ∆k, ∆c and ∆w are three midrise
uniform scalar quantizers.

generality, that all knot vectors are of the form {0, 0, u2, . . . , ur−2, 1, 1}. Given
that the first and last knots do not affect a NURBS and that a knot vector
can be normalized, any knot vector that is not of the previous form can be
cast into it. Likewise, it is also assumed, without loss of generality, that all
the weights wi,j of the control points are in the interval (0, 1]. From eqn. (4)
it is trivial to see that scaling all weights of a NURBS by a constant does not
change the NURBS. Thus, dividing all weights by their maximum value yields
the desired form.
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3.1 Prediction and quantization

From the previous section, it is clear that both knot vectors and control points
have some structure. This structure is exploited by the use of a predictive
scheme, namely differential pulse coded modulation (DPCM), in order to re-
duce the redundancy of the coded data. Transform coding was also considered,
however, both control points and knot vectors can often exhibit large discon-
tinuities in their values which represent important features of the surface. A
transform could introduce large distortions at these discontinuities. Further-
more, the number of samples in each patch is rather low and some transforms
would have trouble exploiting the redundancy. For these two reasons, a pre-
dictive scheme seems more appropriate.

DPCM has been long studied in image compression [11], and optimal pre-
dictors and quantizers have been derived under various conditions for that
application. However, the authors could not find evidence of it being applied
to the problem at hand, where the nature and statistics of the data are fairly
different and badly known. For NURBS, there is no clear relationship between
the error on knots and/or control points, and the actual error on the surface
itself. A conservative approach has thus been taken, where the maximum knot
and control point error is guaranteed, given a quantization step size. This is
achieved by the use of a uniform scalar quantizer.

3.1.1 Knot vectors

As previously mentioned, knot vectors define the shape of the B-Spline func-
tions. In addition, the multiplicity of each knot value defines the continuity of
the surface. It is thus important to preserve their multiplicity in the coding.
Given a knot vector U , it is decomposed into the break vector U ′ ≡ {u′

i} and
the multiplicity map Um ≡ {um

i }. The break vector contains the values of the
knot vector, but where multiple knots appear only once, while the multiplicity
map expresses the multiplicity of each knot, minus one. More formally

um
i = ki − 1 i = 0 . . . r′ (5a)

u′
i = u

i+
∑i

j=0
um

j

i = 0 . . . r′ (5b)

where ki is the multiplicity of the break value u′
i in the knot vector U , and r′+1

is the number of elements in U ′ and Um. The multiplicity map is losslessly
entropy coded, as explained in section 3.2, without prior processing. For the
break vector, DPCM and uniform scalar quantization are used prior to entropy
coding. The order and number of knots is coded as overhead information in
the bitstream header.

Break vectors are always a strictly increasing sequence. In addition, most
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break vectors are uniform, or close to it. One can thus expect the difference
between consecutive break values to remain almost constant, which is used as
the DPCM predictor. The prediction error εito be coded can be thus expressed
as

εi = (u′
i+1 − û′

i)− (û′
i − û′

i−1) = u′
i+1 − 2û′

i + û′
i−1 i = 0, . . . , r′ − 2 (6)

where the DPCM feedback loop is used to avoid the propagation of the quan-
tization error. The decoded break values are denoted by û′

i.

The prediction error is quantized with a midrise uniform scalar quantizer of
step size ∆k. The quantization index is thus ζi = 〈εi/∆k〉, where 〈·〉 denotes
the rounding operator. The break values are thus decoded as

û′
i = ε̂i−1 + 2û′

i−1 − û′
i−2 i = 1, . . . , r′ − 1 (7)

where ε̂i = ζi∆k is the dequantized prediction error. The first and last break
values are implicit: û′

0 = 0 and û′
r′ = 1. In order to compute ε0 the coder and

decoder must agree in the value of û′
−1. Following the fact that most break

vectors are uniform the value is set to û′
−1 = −1/r′, so that ε0 is minimized in

such common cases. As for any DPCM coder with a uniform scalar quantizer,
the coding error for break values is bounded by ∆k/2, as |u′

i − û′
i| = |εi−1 −

ε̂i−1| ≤ ∆k/2.

Figure 3 shows the histogram (calculated over 85 samples) of the DPCM pre-
diction error, for the non-uniform break vectors of the scissors model. From
the figure it is clear that the scheme produces a skewed distribution that is
amenable to entropy coding.
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(a) (b)

Fig. 3. (a) The scissors model, made of seven NURBS patches. (b) Histogram of
quantized prediction error for the eight (out of 14) non-uniform break vectors of the
scissors model.

Although effective, this prediction scheme cannot guarantee that the decoded
break vector will be a sequence of strictly increasing values. If the quantization
step size is too large, it can happen that û′

i > û′
i+1 for some i, leading to illegal

break and knot vectors. Even the case of equality is not desired, since the
multiplicity of some knots, and thus the continuity of the NURBS, would be
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modified. An upper bound on ∆k that guarantees proper coding is min{u′
i+1−

u′
i}, since that implies u′

i + ∆k < u′
i+1 and

û′
i ≤ u′

i + ∆k/2 < u′
i+1 −∆k/2 ≤ û′

i+1 ⇒ û′
i < û′

i+1 for all i

However, this upper bound is not tight and larger values of ∆k can still pro-
duce properly coded break vectors. In practice, the coder must check that the
decoded break values form a strictly increasing sequence. This is fairly simple
since a coder must always calculate the decoded break values in order to cal-
culate the prediction. However, it can deem necessary the use of an iterative
approach to find a suitable value for ∆k, if the initial one is not small enough
to produce a properly coded break vector. As it is shown in section 4, the
bitrate necessary to properly code knot vectors is very low, and thus using a
fine quantization step size is not a problem in itself.

3.1.2 Control points

NURBS control points can be either represented in projective space with ho-
mogeneous coordinates, or in affine space as regular 3D points with their as-
sociated weights. From the example of section 2.2, it is easy to see that the 3D
points in affine space have more redundancy than the 4D points in projective
space. This happens to be the case for most NURBS models. Based on this
fact, the proposed scheme codes, for each control point, the affine coordinates
and the weight, instead of the homogeneous coordinates. The only limitation
in doing so is that it is not possible to handle NURBS with control points at
infinity, without some special processing. However, control points at infinity
are very rarely used, as their evaluation can be problematic.

Pi−1,j−1

Pi,j−1

Ei,j

Pi−1,j

Pi,j

Fig. 4. Parallelogram prediction rule

The DPCM predictor used for the affine coordinates is the parallelogram rule
which has been successfully used in the compression of vertex coordinates of
3D triangular meshes [19]. This rule predicts that given three known vertices,
the fourth will form a parallelogram, as is shown in figure 4. The weights
are also predicted in a similar fashion, but in 2D. Using vector notation for
the control point coordinates and denoting as Ei,j the prediction error for
coordinates and as δi,j the one for weights, one obtains:

Ei,j = Pi,j − P̂i−1,j − P̂i,j−1 + P̂i−1,j−1

δi,j = wi,j − ŵi−1,j − ŵi,j−1 + ŵi−1,j−1

i = 0, . . . , n

j = 0, . . . , m
(8)
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where the DPCM feedback loop has also been used. The decoded control point
coordinates and weights are denoted by P̂i,j and ŵi,j, respectively.

The prediction errors are quantized using different midrise uniform scalar
quantizers, of step size ∆c and ∆w. The prediction error Ei is however normal-
ized by the decoded value D̂, of the maximum side length D of the model’s
bounding box. The quantization indices are thus Qi,j = 〈Ei,j/(D̂∆c)〉 and
ξi,j = 〈δi,j/∆w〉, and the maximum error for the dequantized coordinate and

weight values D̂∆c/2 and ∆w/2, respectively. The weights are, as previously
mentioned, already normalized to the (0, 1] range and require no further scal-
ing.

The control point coordinates and weights are decoded as

P̂i,j = Êi,j + P̂i−1,j + P̂i,j−1 − P̂i−1,j−1

ŵi,j = δ̂i,j + ŵi−1,j + ŵi,j−1 − ŵi−1,j−1

(9)

where Êi,j = Qi,jD̂∆c and δ̂i,j = ξi,j∆w are the dequantized prediction errors.

Along the topmost row and leftmost column the values {P̂−1,j} and {P̂i,−1}
are considered equal to P̂−1,−1. This effectively reduces the prediction to a
zero order one from the left or top neighbor. Likewise, the values {ŵ−1,j} and

{ŵi,−1} are considered equal to ŵ−1,−1. The value P̂−1,−1 is set by the encoder
to the middle of the model’s bounding box and signaled in the header in
exponent-mantissa representation. That is P̂−1,−1 = 2εc(1+µc/2Mc), where εc

is the exponent and µc the mantissa. The number of bits Mc used to code the
mantissa, and thus the precision of P̂−1,−1, is determined so that the quantized
prediction error Q0,0 is guaranteed to be within the allowed dynamic range
(i.e. the maximum number of bits is not exceeded), and is of small magnitude.
Note that all NURBS patches in a model use the same P̂−1,−1 value. For
weights the value ŵ−1,−1 is set to one (i.e. ŵ−1,−1 = 1), since most often the
control points have unit weight.
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Fig. 5. Histogram of quantized control point prediction error for all seventeen patches
of the pencil model: (a) coordinate values Qi,j; (b) weight values ξi,j. For the weights,
only the truly rational patches are considered (eleven out of seventeen).

Figure 5 shows the histograms of the quantized coordinate and weight predic-
tion error for the control points of the pencil model, calculated over 7542 and
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2490 values, respectively. As it can be seen, the distribution of the values is
very skewed, which is well adapted to an efficient entropy coding.

3.2 Entropy coding

The quantized values ζi, Qi,j and ξi,j, as well as the knot multiplicity map
Um, are entropy coded using the MQ adaptive binary arithmetic coder, which
is used in JPEG 2000 [3,10]. This arithmetic coder is very similar to the more
widely known QM coder used in the JPEG [16] standard.

A simple, yet effective, bitplane arithmetic coder is used to compress the quan-
tized values of break vectors and control points. The values are coded in their
sign-magnitude representation. The same coder is used for break values and
control point coordinates and weights. In order to ensure that no overflow can
occur, Nk = 1−blog2 ∆kc magnitude bits are necessary to code a break value,
where b·c denotes the floor operator. This limit is derived by considering the
maximum value of the prediction error, with respect to the quantization step
size. Similarly, Nc = 2−blog2 ∆cc and Nw = 2−blog2 ∆wc magnitude bits are
necessary to code control point coordinates and weights, respectively.

Many knot vectors are uniform. Since uniform knot vectors, clamped or not,
can be determined by the number of their values, it is not necessary to code
their break vector nor their multiplicity map. Similarly, uniform break vectors
only require the coding of the multiplicity map. Therefore, clamped and uni-
form knot vector flags are coded, followed by an eventual uniform break vector
flag. The uniform knot vector flag is coded with a non-adaptive context with
uniform distribution. The clamped and uniform break vector flags are coded
with contexts CKF and UBF, respectively.

Coding of quantized break values proceeds from the most significant magni-
tude bitplane, Nk − 1, to the least significant, 0. For typical break vectors,
max{ζi} is often much smaller than 2Nk − 1. Therefore, many of the leading
most significant bitplanes of {ζi} will be all zero. Let zk be their number. In-
stead of coding all these zero bits separately, zk is signaled by coding, with
the ZBP context, zk 0 followed by one 1. After that, bitplanes Nk − 1 − zk

to 0 follow, where each ζi is coded separately. For each ζi, the leading zero
most significant bits, as well as the leading non-zero one, are coded with the
LZERO context. The remaining magnitude bits, called magnitude refinement
bits, are coded with the MREF context. The sign is coded separately with the
SIGN context.

The entropy coding for control point coordinates is analogous, but with a
separate set of contexts. However, the prediction of the topmost row and
leftmost column of control points is often not as good as for the other positions,
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since it is based on the value of only one neighbor. This decreases the number of
most significant all-zero bitplanes zc and thus increases the number of bitplanes
to be coded. To avoid this, the values {Q0,j}j≥0, and {Qi,0}i≥0, are ignored
when calculating zc. A value z′c is calculated for {Q0,j}j>0 and {Qi,0}i>0, but
still ignoring Q0,0 for very much the same reason. The values are then coded
in the same way as for the quantized break values, except that Nc bits are
coded for Q0,0, Nc − 1 − z′c for {Q0,j}j>0 and {Qi,0}i>0, and Nc − 1 − zc for
the others. Different LZERO contexts are used for each set and different ZBP
contexts are used to signal z′

c and zc− z′c. The entropy coding of control point
weights is identical to the one of coordinates.

In the case where a knot vector is non-uniform, its multiplicity map Um needs
to be coded. The entropy coder in this case is similar to that used for DPCM
coding in JPEG [16], which is a modified version of the method devised by
Langdon [13]. The algorithm to code each um

i value can be summarized as
follows:

if um
i = 0 then

Code a one with the MZERO context
else

Code a zero with the MZERO context
mi ← dlog2(u

m
i )e

for j = 0 to mi − 1 do

Code a one with the MEXP+j context
end for

Code a zero with the MEXP+mi context
if mi ≥ 2 then

Code bits mi−2 to 0 of um
i −1−2mi with the MMAG+mi−1 context.

end if

end if

The basic idea is to choose the statistics based on the magnitude of the values.
First the log2 bin of um

i − 1 is coded using the {MEXP+j} contexts. Then
the magnitude refinement bits are coded using the statistics corresponding to
the bin, that is with the MMAG+mi − 1 context. The case um

i = 0 is treated
separately. Note that for clamped knot vectors um

0 − (p + 1) is coded instead
of um

0 , where p + 1 is the order of the basis function. Likewise, um
r′ − (p + 1) is

coded instead of um
r′ .

4 Experimental results

The rate distortion performance of the proposed NURBS coding scheme has
been evaluated. The distortion between the coded and original surfaces is

http://ltswww.epfl.ch/~dsanta


In Signal Processing, special issue on image and video coding beyond
standards, 82 (11): pp. 1581–1593, Nov. 2002.
http://ltswww.epfl.ch/~dsanta .

14

measured by means of the Hausdorff distance. Let d(p, S ′) be the Euclidean
distance from a point p on surface S to the closest point on surface S ′ (i.e. the
Hausdorff distance). The one-sided L2 distance between S and S ′, d(S, S ′), is
given by

d(S, S ′) =

(

1

area(S)

∫

p∈S
d(p, S ′)2dp

)1/2

This distance is clearly not symmetric. The two-sided distance is defined as
max{d(S, S ′), d(S ′, S)}, which is symmetric. Evaluating this two-sided L2 dis-
tance directly on the NURBS surface is an extremely difficult task. However,
NURBS models can be tessellated as very fine triangular meshes, and the dis-
tance between these is measured by the Metro tool [4]. In the following, the L2

error is expressed relative to the length of the model’s axis aligned bounding
box diagonal, and the rate as the number of bits per control point coordinate
(bits/c.p.c.).

In order to vary the bitrate of a coded NURBS, three quantization step sizes
(∆k, ∆c and ∆w) can be adjusted independently. It is clear that, in general,
reducing one quantization step size, without modifying the others, will increase
the bitrate and reduce the distortion. However, the optimum setting for these
three parameters that minimizes the distortion for a given bitrate is not well
determined. Nevertheless, as is shown below, some simple rules can be applied
to find a semi-optimal trade-off between the different parameters.
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Fig. 6. Rate-distortion curves for the goblet model. (a) Curves for fixed ∆k = 2·10−3

and different ∆w, for which ∆c is varied to obtain different bitrates. (b) Curves for
∆w = ∆c, and various ∆k.

Figure 6a shows various rate-distortion curves for the goblet model, where
the knot quantization step size ∆k is fixed to some small value. The dotted
line shows the rate-distortion curve when ∆w = ∆c. As it can be seen, ∆w =
∆c is close to optimal for all bitrates, as opposed to some fixed ∆w value.
Furthermore, decreasing ∆w below some value (in this case 2 · 10−3) does not
decrease the distortion by any noticeable amount, at any bitrate, although
it decreases the coding efficiency. Finally, one can also observe that, beyond
some bitrate (in this case 4 bits/c.p.c.), almost no reduction in distortion
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occurs. That is, the system “saturates”. Figure 6b shows the rate-distortion
curves for various values of ∆k, where ∆w = ∆c. One can observe that the
aforementioned “saturation” is, as it could be expected, due to the value of
∆k: beyond some bitrate, it is necessary to decrease ∆k to obtain a noticeable
reduction in distortion. Finally, one can also see that the increase in bitrate
incurred by reducing ∆k tenfold is fairly small. This can be explained by
the fact that the number of knot values is normally small when compared to
the number of control point coordinates and weights and that uniform knot
or break vectors are efficiently coded. Therefore, using a value of ∆k that is
smaller than optimal will not adversely affect the compression efficiency.
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Fig. 7. (a) Pencil model’s rate-distortion curves for fixed ∆k = 2 · 10−3 and dif-
ferent ∆w, for which ∆c is varied to obtain different bitrates. (b) Scissors model’s
rate-distortion curves for ∆w = ∆c, and various ∆k.

Figure 7a shows the same results as figure 6a, but for the pencil model. In
this case, weight coding represents a significant amount of the total bitrate
and thus the trade off between ∆c and ∆w is more involved. The ∆w = ∆c

setting is not near-optimal anymore, although it still remains a reasonable
simplification. For the pencil model the setting of ∆k has no influence on the
coding efficiency, because all knot vectors are uniform.

Figure 7b shows results for the scissors model. Similar remarks apply. However,
for this model, the setting of ∆w has a very small effect on the coding efficiency.
This is because there is only one truly rational patch and thus weight coding
represents only a small fraction of the overall bitrate.

As a basis for comparison, table 1 shows the file sizes of the original NURBS
models, in ASCII and binary form, compressed with the popular general pur-
pose gzip compressor. By comparing these numbers to the results shown in
figs. 6 and 7, it is clearly seen that the proposed coding scheme is very advan-
tageous, while remaining simple. For an L2 error of 1 in 104, around three to
four times better compression than gzip’ed binary is achieved. For an error
of 1 in 103 that factor increases to 3.8 or even 6.6, depending on the model.
Figure 8 shows the rendered decoded models, where no visual differences are
visible with respect to the original ones. The proposed scheme achieves, for
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ASCII ASCII binary binary

bits/c.p.c. bytes bits/c.p.c. bytes

goblet 13.53 1279 10.11 956

pencil 7.42 9303 6.23 7814

scissors 15.45 5961 13.15 5075

Table 1
Compressed size of original models, in ASCII and binary (32 bit floating point).
Compressed with gzip, maximum level.

visually lossless results, a compression factor four or more times larger than
the lossless compression obtained by gzip’ing the binary files.

(a) (b) (c)

Fig. 8. Coded NURBS models: (a) goblet, 2.3 bits/c.p.c., L2 error 14.8 · 10−4; (b)
pencil, 1.0 bits/c.p.c., L2 error 5.1·10−4; (c) scissors 2.4 bits/c.p.c., L2 error 3.9·10−4 ;

Finally, figure 9 compares the proposed NURBS coding scheme with com-
pressed polygonal meshes obtained by tessellation of the goblet and pencil
models. The mesh compression techniques used are those of MPEG-4 [9],
namely the 3DMC reference software of Feb. 21, 2001, and Touma-Gotsman
[19]. It is clearly seen that compressed NURBS are much more compact than
polygonal meshes, even in the case of coarse ones. The proposed scheme, be-
sides providing more than 5 times better compression, provides much better
visual quality for comparable L2 errors. In fact, surface normals are implicit
in NURBS, whereas they must be estimated when rendering the compressed
polygonal meshes. MPEG-4 allows to code the “true” normals of a model, but
that increases even more the difference in coding gain with respect to the
proposed scheme.

5 Conclusions and future work

In this paper we propose a method for lossy compression of NURBS models
generated by 3D model synthesis processing, such as CAD and virtual char-
acter generation systems. The method employs a DPCM coder with ad-hoc
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Fig. 9. Rate-distortion behavior of compressed polygonal meshes and the proposed
NURBS coding scheme for the (a) goblet and (b) pencil models. (c) Visual results
for Touma-Gotsman on the goblet model with 612 vertices and 1192 triangles, com-
pressed size is 1328 bytes and the L2 error is 17.6 · 10−4 with respect to the original
NURBS model.

predictors and a uniform scalar quantizer, followed by bitplane arithmetic en-
tropy coding. The use of a uniform scalar quantizer guarantees a maximum
bound for the error on the various NURBS parameters. The rate-distortion
characteristics of the method have been evaluated on various models, and com-
pared to the lossless compression ratios obtained on the original models. The
results show that the proposed method is efficient while retaining visually loss-
less characteristics. In addition, a comparison has been made with compressed
triangular meshes derived from the NURBS models, which clearly shows the
advantage of using compressed NURBS instead of triangular meshes.

Although the presented method proves to be effective, two main subjects de-
serve further work. First of all, a rate-allocation scheme that takes into ac-
count the surface distortion, instead of the distortion of the NURBS param-
eters themselves, could improve the rate-distortion performance. Second, and
most important, the connectivity relationships between the various NURBS
patches of a model need to be taken into account to make a robust coding
system. Within a model, the various NURBS patches are often adjacent to
one another, making a continuous surface. However, the distortion introduced
by the coding process can make the (originally) adjacent patches not adja-
cent anymore. As a consequence, visually visible cracks appear in the decoded
model. Note that using triangular meshes derived from the model can suffer
from the same problem.
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