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Abstract

For the second generation based coding of video sequences, like MPEG-4, it is nec-
essary to obtain a robust segmentation where the belonging of regions to objects is
preserved across frames.

A feature space approach, in which the local characteristics of the image are
treated altogether, should constitute a robust method of accomplishing such seg-
mentations.

In this project several features are studied that can be used in such an approach.
The main ones are the local average and local standard deviation.

To avoid the edge blurring that normally occurs when applying an averaging
filter, a method is developed, based on the sigma filter, that preserves the edges
while eliminating the noise. Also several methods are developed to reduce the border
problem that appears in the estimation of the local standard deviation.

The studied features are tested with vector quantization as a basic segmenta-
tion algorithm. The ones used are not only based on the gray level but also on
the chrominance components, which significantly increases the robustness of the
segmentation.

This set of features is also applied to the segmentation of sequences achieving
good tracking of regions across the frames without any special strategy. This enables
the approach to be used in partially supervised segmentation schemes.



Resumé

Dans le monde d’aujourd’hui, où les télécommunications et le multimédias sont
en plein essor, il est très souvent nécessaire de compresser l’information. Un des
types de données les plus importants dans ce domaine ce sont les images et plus
particulièrement les séquences vidéo.

A présent de nouvelles techniques de compression sont en train d’être devel-
oppées, basées dans des techniques dites de deuxiéme génération, telles que MPEG-
4. Dans ces techniques l’image est divisée en plusieurs régions de forme arbitraire
qui sont codées séparement. Pour augmenter au maximum le taux de compression
les régions sont prises comme des aires homogènes à l’intérieur des objets. Dans
MPEG-4, dont la standarisation est prévue pour fin 1998, la séparation se fait aussi
au niveau d’objets permettant ainsi de les manipuler séparément dans l’image codée.

Pour pouvoir appliquer une telle strategie de codage il est nécessaire de disposer
des séquences vidéo segmentés, où les régions à coder sont déjà determinées, de
même que l’appartenece de celles-ci aux différents objets. A fin d’obtenir de telles
séquences de façon automatique, ou semi-automatique, une méthode de segmenta-
tion robuste est nécessaire, où l’appartenance des régions est maintenue entre les
différentes trames. Ces dernières exigences font de ceci un problème difficile pour
lequel une bonne solution n’a pas encore été trouvée.

Une approche interéssante est celle du feature space ou plusieurs caractéristiques
locales de l’image sont traitées en parallèle par des méthodes de filtrage vectoriel.

Dans ce projet nous avons cherché les caractéristiques (features) qui sont les
plus adaptés à une segmentation robuste et à poursuivre les régions entre les trames
d’une séquence.

Les caractéristiques utilisées sont la moyenne locale et l’écart moyen local.
Néanmoins les méthodes d’estimation de ces paramètres ont été modifiés pour
s’affranchir des problèmes inhérents à ces caractéristiques.

La moyenne locale à le grand inconvénient de rendre flous les bords des régions.
La méthode employé, basée sur le filtre sigma, selectionne les pixels, sous la fenêtre
de calcul, ayant les mêmes caractéristiques communes. Seulement ces pixels rentrent
dans le calcul de la moyenne. Comme résultat le moyennage élimine le bruit et rend
plus homogènes les régions tout en respectant parfaitement les bords.

L’écart moyen local a pour ça part un autre inconvénient lié aux bords. Lorsque
celui-là est calculé pres d’un bord l’estimation de l’écart moyen donne des valeurs
beaucoup plus grandes que les normales, mais ne représentant aucune texture. Ceci



est du au saut du niveau de gris qui apparâıt dans le bord, qui ne constitue pas
vraiment une texture. Une méthode semblable à celle utilisée pour la moyenne
locale, mais plus complexe, permet de réduire notablement l’effet des bords sans
pour autant affecter la “mesure” des textures.

Ces caractéristiques, apliquées au niveau de gris aussi bien qu’aux chrominances,
donnent des segmentations de bonne qualité dans des différents types d’images. Mais
plus important encore, elles sont presque invariantes dans le temps, ce qui permet
de poursuivre facilement les régions entre les trames.

Les caractéristiques trouvées constituent une bonne base pour devélopper un
algorithme de segmentation bien adapté. Pour nos tests de segmentation nous avons
utilisé un algorithme de quantification vectorielle que malgré le fait qu’il ne soit pas
un vrai algorithme de segmentation était assez bien adapté pour tester la robustesse
des caractéristiques étudiés.

De plus une librarie et des programmes, représentant plus de 6000 lignes de code,
ont été developpés et seront integrées avec celles du laboratoire pour être utilisées
dans le futur.
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1 INTRODUCTION 1

1 Introduction

1.1 Second generation coding: MPEG-4

In our days data compression is very important for transmission and storage pur-
poses. One of the main types of data to compress, specially concerning transmission,
are the images and particularly the video sequences. Several compression standards
exist today, some of them being H.261/H.263 and MPEG-2. In these coding stan-
dards frames are split in rectangular blocks, which are then coded independently.

Currently another type of coding is being developed, the so called second gen-
eration coding. These new schemes work by coding arbitrarily shaped regions of
the image separately, and not just rectangular blocks as in the first generation ones.
The splitting of the image in uniform regions enables for higher compression rates
for given distortion and subjective quality.

Here appears the necessity to make a clear distinction between objects and re-
gions. Objects have a semantic signification, for example a car, a person, a tree,
etc. An object is divided into regions, which are uniform areas. A region can be,
for example, a part of an object with same light and color.

One can think of a two-level partition of images: the first, in which semantically
meaningful objects are separated, is the object layer and the second, where the image
is further divided into regions which are homogeneous according to other criteria
(e.g. color and/or gray level), is the region layer. A region should then belong to
only one object. The regions is what one normally obtains from a segmentation.

MPEG-4 is a standard, to be released by the end of 1998, that is based on second
generation coding. This standard works at the object level rather than at the region
one. One of the key elements of MPEG-4 is its object scalability: every object is
coded separately and can also be decoded independently of the other objects.

The object scalability enables for a multitude of different applications like:

• easy editing of a sequence, even by the end user,

• content based search (i.e automatically search in a sequence the part where a
particular object appears),

• graceful degradation for transmission over bandwidth limited channels (i.e
different objects are coded with different quality),
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In order to achieve this object scalability is necessary to have the sequence seg-
mented at the region and object levels before the coding is done. It is therefore
necessary to have an automatic or semi-automatic system that segments a sequence
at both levels. This is a problem very difficult to solve, where a lot of research has
been done and is still being done.

In this project we will study the possibility of doing the segmentation in the
feature space, and also study its robustness.

1.2 Supervised segmentation and object tracking

The process of separating the objects in an image is trivial for humans but it actually
requires a lot of previous knowledge, experience and training. We know what the
objects are and because of this we are capable of merging several regions into an
object without any effort.

In the computers we have nowadays, even if they are extremely powerful, it is
impossible to incorporate all the intelligence and all the visual experience humans
have. Therefore it is very difficult to come up with a system capable of segmenting
a video sequence and merging the regions into objects in a fully automatic way. On
the other hand computers are more suited to divide the images in regions with a
given criteria (e.g coding efficiency, gray level)

A partially supervised approach appears as a promising intermediate solution to
the segmentation problem. It consists in telling the computer, by means of a human
interface, which regions belong to the same object. However the assistance to the
computer should be minimal so as to make the system usable in practical situations.

Once the computer knows the correspondence between regions and objects for
one frame it will repeat the segmentation for the following ones maintaining the
same attribution of regions to the semantic objects.

This robustness of the segmentation also achieves object tracking since the cor-
respondence across frames of the regions constituting an object are well established
for the whole scene.

1.3 Feature space approach

Some of the existing methods of segmentation take into account the local character-
istics of the image such as gray level, motion information or texture, independently,
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and eventually merge the results of the different segmentations. Other methods
use these local characteristics, or features, according to a competitive or iterative
scheme. Because of the processing of each feature being done at a different stage in
the segmentation the system is not very robust.

In the feature space we associate a vector of features to each pixel of the image
and this vector becomes an entity in its own, instead of having a collection of features
for an image that are considered as separate things (as in the other approaches).
The processing of the features is then done in parallel by means of vector-based
operators, such as vector filtering or vector quantization.

With this approach, and provided appropriate sets of features are selected, it
should be possible to obtain a robust method for general purpose segmentation that
can achieve object tracking across several frames in a straightforward way.

In the following sections we will first present the features used and how they are
calculated. The results of segmentation based on these features is presented in Sec.
4.
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2 The feature space

2.1 Local average

As far as segmentation is concerned one of the most significant characteristics of an
image is the gray level or luminance. Two drawbacks of directly using the gray level
as is found in the image are that it is normally not uniform inside the regions and
that it can be noisy. This makes its direct use for segmentation difficult.

Therefore it is important to find a method to eliminate the noise of the gray
level so that it can be used for the segmentation. Two different approaches exist
to overcome this difficulty. The first one consists in using an averaging filter, or
other low-pass filter, which effectively removes the noise. The second one consists
in starting the segmentation with the image at a very low resolution and improve it
iteratively using higher resolutions. The details of these methods and the problems
encountered with them are explained below.

As explained above, the first solution consists in taking the average of the gray
level over a small window centered on the pixel of interest, as given in eqn. (1) for
a M × N window, with M and N odd, where (xij) is the gray level image. Usually
one uses odd sized windows so that the center pixel is well defined; most used sizes
are 3×3, 5×5 and 7×7. Because averaging is a kind of low-pass filtering the higher
spatial frequencies (including noise) are attenuated.

x̄ij =
1

MN

k=i+(M−1)/2
l=j+(N−1)/2∑
k=i−(M−1)/2
l=j−(N−1)/2

xkl the local average (1)

In the following we will refer to this feature, local average, as avg.

In Fig. 1 we can see an image in gray level and its local average calculated with
a 5× 5 window. The result is much more uniform inside regions, however there is a
major drawback: the image is blurred so that the precise edges in the original image
are lost. Therefore this information it is not directly usable in a robust algorithm.

In the multi-resolution methods, also called pyramidal methods, one forms low-
resolution images from the original image by replacing, for example, a square of four
pixels with their average (Fig. 2). Then we start the segmentation at the lowest
resolution image and then improve it with the next higher resolution image and
continue this process until we get to the original image.
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Figure 1: original image (left) and average, avg, gray level with 5×5 window (right).

Figure 2: multi-resolution approach example.
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These multi-resolution approaches are very complicated: going from a coarse
segmentation towards a finer one it is not a trivial problem. Here we want to elude
this kind of complications by using the average information at a full resolution level
but without loosing the edges. In Sec. 2.4 we will show a method to solve the edge
problem based on a sigma filter [1].

The local average characteristics are not only useful when calculated on the
gray level, even if this last one is the most important. In fact when the images to
process are in color we can use the local average of the chrominance components
in the segmentation process. As we shall see having the average on three color
components makes the segmentation much more robust.

2.2 Local variance and standard deviation

Besides the average gray level, there are other useful types of information about an
image. One of them is the fact that different objects can have different textures.
There are several “measures” of this texture information. The simplest one is the
local variance.

The local variance is calculated over a M ×N window ( M and N odd) centered
on (i, j) as given by

var(xij) =
1

MN

k=i+(M−1)/2
l=j+(N−1)/2∑
k=i−(M−1)/2
l=j−(N−1)/2

(xkl − x̄ij)
2 (2)

where x̄ij is the local average calculated as in eqn. (1) and (xij) is the gray level
image on which we calculate the features.

However there are some problems with this kind of feature as seen in Fig. 3, an
aerial photography of the San Francisco bay, where the variance value is represented
as a gray level (a 0 variance corresponds to black). This actually looks more like
the result of an edge detection algorithm than a “texture detection” one.

The problem comes from the fact that when the variance is calculated over a
region edge the step change in gray level makes the estimation to take values more
than 40 times larger than the values obtained over very textured regions. As a
result, the interesting information about textures is lost.
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Figure 3: original image (left) and local variance, var (right), over a 5 × 5 window
(right).

An alternative measure is the local standard deviation, or local sigma noted σij,
which is nothing more than the square root of the local variance.

σij =
√

var(xij) (3)

These features will be designated as var for the local variance and as std for the
local standard deviation.

The standard deviation obtained for the image in Fig. 3 is shown in Fig. 4. As we
can see, the land and the water have a clearly different texture and this is reflected
in the local standard deviation values. The feature is then representative of the
texture but the problems with the borders still remain. This makes this feature not
a robust one because the borders are considered as separate from the objects they
actually belong to.

Another alternative is to use the logarithm of the local variance as given by eqn.
4. However this has the drawback of making small changes in variance, which are
not representative of textures, too important while the border problem is not solved.
An example is shown in Fig. 4 for the image of Fig. 3.

yij = log10 (1 + var(xij)) (4)

In the following sections some solutions to the border problem will be shown:
one based on the gradient information (Sec. 2.3) and another one based on the sigma
filter (Sec. 2.5).
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Figure 4: local standard deviation, std (left), and logarithm of the local variance,
var (right). Both calculated over a 5 × 5 window.

To differentiate between textures with different orientation one could use the
variance calculated over lines or columns, or even diagonals, of the window (a direc-
tional variance). The horizontal variance, that is the average of the variance along
the lines of the window, which would reflect a vertical texture, can be calculated
over a M × N window (M and N odd) as

hvar(xij) =
1

MN

k=i+(M−1)/2
l=j+(N−1)/2∑
k=i−(M−1)/2
l=j−(N−1)/2

(xij − havg(xij))
2 (5)

where

havg(xij) =
1

N

j+(N−1)/2∑
l=j−(N−1)/2

xij (6)

The other directional variances can be calculated in the same way but exchanging
lines and columns, or even diagonals and anti-diagonals. However the same problems
that appear with the non-directional variance or standard deviation appear here, but
the solutions are very similar.

2.3 Local variance with gradient information

As we have seen in the previous section the variance and standard deviation in-
formation is useful for identifying textures. However the border problem is very
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Figure 5: mirroring across a border: before (left) and after (right).

annoying.

In order to solve the problem one has to calculate the variance only with the
pixels lying inside the window that belong to the same region as the center pixel. In
that manner the step change in gray level across edges does not affect the variance
estimation. The problem is not trivial since knowing to which region each pixel
belongs is knowing a segmentation of the image, which is actually our objective.

However, since the windows used are small compared to the size of regions there
is normally no more than one edge under the window. One can then use the gradient
information to detect the presence of an edge and decide to which side of the center
pixel it lies so to separate the two regions. Once these regions are identified we
replace the pixels lying on the “bad” region by mirroring across the border the
pixels in the “good” region (the one that contains the center pixel). Finally we
calculate the variance over the obtained window after the mirroring as explained in
Sec. 2.2.

An example of this mirroring technique is shown if Fig. 5 where the border pixels
are dark shaded and the mirrored pixels are light shaded.

The algorithm as described above looks quite simple. In reality is much more
complicated because it is not clear from the gradient information which pixels are
on an edge and which not. A high value of the gradient’s magnitude reveals the
presence of a border, but what is high enough? One has to fix some thresholds,
decide on a majority basis, etc. A full description of the proposed algorithm can be
found in the source code of the feature program.

In the implementation we used the Sobel operator to obtain an estimate of the
gradient. The matrices used for the Sobel horizontal (Sh) and vertical (Sv) operators
are

Sh =

 −1 0 1
−2 0 2
−1 0 1

 Sv =

 1 2 1
0 0 0

−1 −2 −1

 (7)
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Figure 6: local variance with mirroring, svar, in normal (left) and log scale (right),
over a 5 × 5 window.

and the magnitude of the gradient is then obtained by

|gradij| =
√

xh(i, j)2 + xv(i, j)2 (8)

where xh(i, j) and xv(i, j) are the results of filtering the image x(i, j) with Sh and
Sv respectively (∗∗ is the two-dimensional convolution).

xh(i, j) = x(i, j) ∗ ∗Sh

xv(i, j) = x(i, j) ∗ ∗Sv
(9)

In the following we refer to the local variance and standard deviation, calculated
with the above method, as svar and sstd respectively.

We applied the algorithm explained above to the image with the gradient’s mag-
nitude obtained from the Sobel operator. An example of the results obtained for
the local variance are shown in Fig. 6 for the image of Fig. 3. Another example is
shown in Figs. 7 and 8 for another image.

In the first of these examples there is an improvement over the normal calculation
(as seen in Sec. 2.2, Figs. 3 and 4), however the result is still not acceptable for a
segmentation application since the edge problem remains important. In the second
one there is an improvement in some areas but there is an unacceptable deformation
of fine details in some other zones (e.g the face).

The reason for the persistence of the edge problem is that the borders between
regions are not a step change in gray level but more a gradual one. As a consequence
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Figure 7: original image (left) and its local variance, var (right), over a 5×5 window.

Figure 8: local variance, var (left), and local variance with mirroring, svar (right).
Both in log scale and calculated over a 5 × 5 window.
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the presence of the pixels lying on the edge unduly increases the value of the variance.
A solution could be to shift the detected edge towards the center pixel and to mirror
the pixels from further away. This could work for large regions were there are pixels
of the same region far way of the edge, but for thin objects this method would be
catastrophic because pixels from still another region would be taken into account
leading to even more disastrous results.

Another problem of the technique employed here is that small details get de-
stroyed by the mirroring because the axis of mirroring it’s not a straight line, and
also because sometimes there could be two edges under the window, making the
technique to fail.

As we have seen this is not a good solution for the edge problem. Another
technique based on a sigma filter, and that works much better, is explained later in
Sec. 2.5.

2.4 Local average and sigma filter

As explained in Sec. 2.1 the local average is a very useful feature but has the draw-
back of blurring the edges. Here we will present a method to calculate the local
average without blurring edges that works perfectly well, based on sigma filters [1].

The blurring of edges comes from the fact that the average is taken on all the
pixels under the window without any discrimination of regions. The idea of the sigma
filter is that only the pixels under the window whose value lie within a predetermined
range, the inliers, are taken into account while the outliers are left out. The range
is centered on the center pixel’s value. This computation can apply to luminance as
well as chrominance values.

In the original version of the sigma filter the range is fixed as [xij − 2σ, xij + 2σ],
were σ is the standard deviation of the value across the whole image. The 2σ range
comprises, for a Gaussian distribution, the 95.5% of pixels and is large enough to
include most of the pixels of the same region, but at the same time small enough to
exclude those from other regions.

In the version we use the modified range is [xij − 2σij, xij + 2σij], where σij is
the local standard deviation as calculated in eqn. 3. This has the consequence of
blurring the edges still less than the standard sigma filter. Nevertheless when we
approach very sharp edges, where the local sigma (σij) is very high, we have to limit
the range so no blurring will occur. The maximum allowed σij is then fixed as 2
times the average of σij throughout the image.
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Mathematically this can be put as

δkl(ij) =

{
1 , if (xij − ∆ij) ≤ xkl ≤ (xij + ∆ij)
0 , otherwise.

(10)

where

∆ij =

{
σij , if σij ≤ 2σ̄ij

2σ̄ij , otherwise
(11)

and

σ̄ij =
1

IJ

i=I−1
j=J−1∑

i=0
j=0

σij (12)

where I and J are, respectively, the height and width of the image.

In other terms δkl(ij) is 1, meaning inlier, when xkl is inside the range relative
to xij as the center pixel, or 0 otherwise, meaning outlier (the (ij) subindex means
relative to xij).

Then we take the average, over a M × N window (M and N odd), only on the
pixels marked as inliers. Or mathematically

x̂ij =
1

Sij

k=i+(M−1)/2
l=j+(N−1)/2∑
k=i−(M−1)/2
l=j−(N−1)/2

δkl(ij)xkl (13)

where x̂ij is the local average calculated with the sigma filter and Sij the number of
inliers inside the window centered on (i, j),

Sij =

k=i+(M−1)/2
l=j+(N−1)/2∑
k=i−(M−1)/2
l=j−(N−1)/2

δkl(ij) (14)

In the following we will refer to this feature, the local average calculated with a
sigma filter, as the sigavg feature.
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Figure 9: local average with sigma filter, sigavg, over a 5 × 5 window.

Two examples of the result of this filtering are shown in Fig. 9, taken on the
images of Figs. 1 and 7. It is clear that with this method we get the advantage of
the average inside the regions without sacrificing the edges, which is very important
for our purposes: a robust segmentation. The good performance of the method is
demonstrated by the fact that even small details, such as the eyes in one of the
examples, are not modified by the averaging. We get smooth regions with sharp
borders, ideal for segmentation based on gray and chrominance average values.

Yet another modification that could be introduced in the basic sigma filter is the
K-limit. When the basic sigma filter is applied sometimes almost all pixels in the
window are marked as outliers and thus it does not average some isolated pixels.
What one can do to solve this problem is that when the number of inliers is less than
a fixed number, the K-limit, the result is replaced by the average of the immediate
neighbors of the center pixel.

Mathematically eqn. 13 would be replaced by

x̂ij =



1
Sij

k=i+(M−1)/2
l=j+(N−1)/2∑
k=i−(M−1)/2
l=j−(N−1)/2

δkl(ij)xkl , if Sij ≤ K

1
8

k=i+1
l=j+1∑
k=i−1
l=j−1

(k,l) �=(i,j)

xkl , otherwise

(15)

The K limit has to be carefully chosen so not to wipe out any fine details.
Nevertheless, even with a small K (like 2) there are some parts of thin lines that
get wiped out. This is a big drawback of this strategy that is not acceptable for our
segmentation purposes so it is actually not used.
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2.5 Local variance and sigma filter

The application of the sigma filter to the calculation of the local average gives, as
we have seen, very satisfactory results. One could then apply the same strategy to
the calculation of the local variance and local standard deviation. By analogy it
would consist in calculating the local variance or local standard deviation on the
pixels marked as inliers only, according to

v̂ar(xij) =
1

Sij

k=i+(M−1)/2
l=i+(N−1)/2∑
k=i−(M−1)/2
l=i−(N−1)/2

δkl(ij)(xkl − x̂ij)
2 (16)

and

σ̂ij =
√

v̂ar(xij) (17)

where v̂ar(xij) is the local variance calculated with the sigma filter, σ̂ij the local
standard deviation, also calculated with the sigma filter, x̂ij the local average calcu-
lated with the sigma filter as in eqn. 13, and δkl(ij) and Sij are calculated as in eqns.
10 and 14 respectively. In the following we will refer to features calculated in this
way as sigvar for the local variance and sigstd for the local standard deviation.

Here the limitation of the range for high σij, as explained in the previous section,
is very important. If such limitation is not done, pixels from different regions, under
the same window, are taken into account in the calculation and the results are not
much better than those obtained in Sec. 2.2.

An example of this calculation is shown in Fig. 10 for the image of Fig. 1. We
can see that the border problem has been greatly reduced in comparison with the
calculation of the variance over the whole window as in Sec. 2.2, and there are no
problems of deformation of the regions as with the calculation with the gradient as
shown in Sec. 2.3.

Even though the border problem is greatly reduced using the sigma filter it is
not completely solved. Thin lines of high variance are still present. This is due
to the fact that when the center pixel lies on the border its value is normally an
intermediate one between the values of the two adjacent regions. As a consequence
the range of accepted values for the sigma filter includes some pixels of one region
and some of the other and the variance estimation is incorrect. Unfortunately if
the range is further reduced, so that no pixels of the adjacent regions are included,
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Figure 10: local variance, sigvar (left), and local standard deviation, sigstd (right),
both calculated with a sigma filter over a 5 × 5 window.

there are no inliers left but the center pixel. As a result the estimated variance
would be 0 what it is not a good result either. One solution to this problem that
uses post-processing is presented in Sec. 2.6.

Another problem that appears inside some regions with texture, like the back-
ground in Fig. 10, is that the variance does not correspond to the one calculated
without the sigma filter. This is caused by a large amount of pixels being marked
as outliers. In order for them to be marked as inliers we have to increase the limit
of the accepted range, however this will have the consequence of increasing the edge
problem.

To solve the latter difficulty yet another modification of the sigma filter can be
used. It consists in marking the outliers based on the sigavg instead of on the image
itself (i.e the pixels are considered as inliers if their sigavg, and not their original
value, lies inside the range). However the calculation of the variance is done on the
actual image data (i.e the original values).

This last modification can be stated as

δ
(a)
kl(ij)

=

{
1 , if (x̂ij − ∆ij) ≤ x̂kl ≤ (x̂ij + ∆ij)
0 , otherwise.

(18)

where ∆ij is calculated as in eqn. 11 and x̂ij is the local average calculated with the
sigma filter as in eqn. 13 (the superscript (a) states that the marking of outliers is
done on the local average calculated with the sigma filter).
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Figure 11: local variance (left) and standard deviation (right), calculated as sasigstd
and sasigvar respectively. The window used is 5 × 5.

Then the new local variance and standard deviation are calculated as

v̂ar(a)(xij) =
1

Sij

k=i+(M−1)/2
l=i+(N−1)/2∑
k=i−(M−1)/2
l=i−(N−1)/2

δ
(a)
kl(ij)

(xkl − x̂ij)
2 (19)

and

σ̂
(a)
ij =

√
v̂ar(a)(xij) (20)

In the following we refer to the features calculated with this method as the sasig-
var for the local variance (v̂ar(a)(xij)) and as the sasigstd for the local standard

deviation (σ̂
(a)
ij ).

An example of the result is given in Fig. 11. One can see that now the variance
inside the regions is correctly calculated and that the edge problem is reduced in
certain areas.

Another problem with these methods to calculate the local variance that has not
been mentioned yet is that there are some isolated black spots (i.e variance 0) at
some places, like the border of the table in Figs. 10 and 11. This occurs not because
the local variance is actually 0 but because all pixels in the window are marked
as outliers with the exception of the center pixel, which is always an inlier, and a
variance calculated over only one element is always 0.

It is not possible to solve this problem by modifying the calculation process of
the local variance because if only one of the pixels marked as outliers is included the
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σeff

σijσmax

maxσ

slope = 1

Figure 12: function to calculate effective sigma to use with the sigma filter.

resulting variance is very high due to the difference of the pixels’ values. However this
problem can be solved with some post-processing as it is explained in the following
section.

In addition to what is explained above there were some other modifications of
the sigma filter that were tried, to improve the final result. However none of them
were satisfactory.

One of those strategies was to use an effective sigma related to the local sigma,
σij, with a function like that of Fig. 12. That is if σij was less than a limit, σmax, the
effective sigma, σeff , was equal to the former, but if it was greater than the limit,
σeff would be much smaller. In this manner when the window would be over edges
the range of accepted pixels would be much smaller and less pixels would be taken
into account.

Unfortunately this last method doesn’t work any better than just limiting the
maximum σij allowed as it was done before. That’s why we abandoned this last
idea.

Another idea was to pass the result of calculating the local variance with the
sigma filter trough a 3 × 3 sigma filter. The result is very deceiving since the edges
are completely blurred and the improvement on the values of the variance is not
significant. So this idea was abandoned too.

As a last example we show in Fig. 13 the result of calculating the standard
deviation as sigstd and sasigstd for the San Francisco bay image. Compared to the
simple calculation of the local standard deviation (without sigma filter nor gradient
information), shown in Fig. 4, the result is significantly better, specially when the
marking of outliers is done on the local average (calculated with the sigma filter).
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Figure 13: local standard deviation calculated calculated as sigstd (left) and sasigstd
(right). The window size used is 5 × 5.

The only remaining problem is that some “black spots” appear due to all neighboring
pixels being marked as outliers. However this is not a big problem with respect to
a segmentation, because a good segmentation algorithm merges isolated pixels into
the neighboring regions.

2.6 Median and sigma filters applied to local variance

As we have seen in the previous section the application of the sigma filter to the
calculation of the local variance and standard deviation significantly improves the
quality of the estimation. Unfortunately this is not enough to completely solve the
edge problem, even though this one is greatly reduced.

In order to reduce even more the problem one can use some post-processing.
What we have to remove from the result of calculating the local variance with the
sigma filter are the thin lines of high variance and the isolated pixels of 0 variance.
One useful filter to remove this kind of thing is the median filter.

The two dimensional median filter orders the pixels by their value and then
picks up the one lying in the middle. In that way if in the window there are some
pixels with a high value it does not affect the result as it would be the case with an
averaging filter. The window size need not to be large because the purpose of the
median filter here is to remove the thin lines of high variance that may appear. The
3 × 3 window used is enough to accomplish it.

We will refer to the feature obtained by applying the median filter on sigstd as
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Figure 14: application of a 3 × 3 median filter: local standard deviation calculated
as sigstdmed (right) and sasigstdmed (left).The window size used is 5 × 5.

Figure 15: application of a 3 × 3 median filter: local standard deviation calculated
as sigstdmed (right) and sasigstdmed (left).The window size used is 5 × 5.

sigstdmed, and to the one obtained by applying the median filter on sasigstd as
sasigstdmed.

Some examples of the results obtained are shown in Figs. 14 and 15. As one can
see all the thin lines of high variance, coming from edges, and the “black spots” are
removed. However edges are shifted and sometimes small details are lost. It should
be up to the user to make a trade-off, based on the application, between applying
or not the median filter, accordingly with the wanted precision for the borders.
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3 The features implementation

For the features explained in the previous sections some programs and mainly a
reusable library were developed in C++ using the LTSPlatform, a programming
platform designed at the Signal Processing Laboratory (LTS) at EPFL.

In the following sections we explain the most important aspects of the developed
library and programs, and also some off-the-shelf programs.

3.1 The LTSPlatform

When designing new algorithms it is necessary to validate them. In the image
processing field this is normally done by software simulation. As a consequence it is
necessary to write a program to do simulation.

A normal procedure to do that is to write a piece of software from scratch, or
almost, debug it and only at the end concentrate in the algorithm part. The fact that
the basic parts have to be written and debugged every time represents an enormous
waste of time.

As a solution to this problem a programming platform, called the LTSPlatform,
has been developed at the lab in the C++ language. Its object oriented design
makes it possible to reuse modules, or objects, just having to know how it can be
used and not having to know in detail how it is done.

A detailed explanation of the LTSPlatform cannot be given here but the brief one
given below should suffice to understand the following sections. For more detailed
information about the LTSPlatform refer to [3].

All the basic data structures, like strings, vectors, matrices, several image types
and many others, have already been implemented; and also some basic functions
like image reading and writing to disk, etc.

For the algorithm implementation part, all objects should derive from Arrow or
Box objects. This is inspired from block diagrams: arrows are data carrying objects
and boxes are processing units. As an example an image derives from Arrow and a
DCT transform from Box.

An arrow doesn’t do anything, it just stores the data in a convenient form. The
box does the processing but doesn’t store any data (at least permanently). How can
one then change the behavior of a box? In the LTSPlatform one can create a set of
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features vector

feature n

feature n-1

feature 3

feature 2

feature 1

Figure 16: the FeatureMatrix structure.

parameters for a box, their values being set before it starts working. In this way
one can influence the algorithm.

3.2 The FeatureMatrix arrow

First of all what we need in the program is an object to store the features data (like
local average, standard deviation, etc.). A class, called FeatureMatrix was created
for this purpose which inherits from Arrow since it is a data storage object.

The FeatureMatrix class is mainly a matrix of vectors. Each element of the
matrix corresponds to a pixel of the image, so the matrix and the image have the
same size. The feature data is stored in the vectors, elements of the matrix, as one
feature per position in the vector.

One can alternatively think of this structure of as a stack of “images”, each
“image” containing the information about one feature, as shown in Fig. 16.

The vector elements are floats so there are no overflow or precision problems.
However, if more precision is needed, it is possible to change this to double by just
changing a definition.

This structure is well suited for the task of storing and processing the data.
However this is not enough, since it is necessary to know which feature is at which
position in the vectors, with what window size it was calculated, on which color
component, etc.

For that purpose there are auxiliary data structures in FeatureMatrix. These
are arrays containing complete feature specifications, one for each position in the
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vectors. The information they hold is: the feature type, the size of the window
used (horizontal and vertical) and the color component on which it is calculated
(luminance Y, chrominance U or V).

This feature specification data it is not directly accessible by the user. It is
accessed by some functions that let find a feature in the FeatureMatrix, know
which feature is at which position, and set the feature information. However the
feature data is directly accessible by the user.

A feature type is defined for each feature discussed in the previous sections (i.e
local average, local average with sigma filter, local variance, etc.). If one thinks of
another feature type it is possible to include it by just adding a type definition for
it (detailed instructions are found in the source code). The algorithm is defined in
FeatureCalc, FeatureMatrix just being a data storage object.

As for the features, it is also possible to add other color spaces to the one already
defined, so it is possible to use the defined features on other color components. This
is done by just adding a color component type definition. The function that does
the transformation between one color space and the other is implemented in Fea-

tureCalc.

The color components already defined are: Y, U and V, since we work with YUV
images.

A FeatureMatrix can also be resized (keeping or not the current data), assigned
to another FeatureMatrix, or created from another one (by its copy constructor).
Furthermore a FeatureMatrix can be reinitialized: the feature type specifications
are all set as uninitialized and the color component specifications reset to Y.

There are also I/O functions in FeatureMatrix that allow saving and reading
data from disk. One can write the features data, as one file per feature type, in
any image file format already defined in the LTSPlatform , or in pure ASCII format
(readable by MATLABtm). Otherwise one can also write all feature data, one vector
after another, in one binary file without any feature specification.

A file format and the read and write functions for this one have also been defined.
This file format saves the whole FeatureMatrix, features data and specifications,
and has an identification stamp, “or magic number”, to identify the file type.

Finally, given a segmentation, one can write feature data in one file per region,
so to isolate the features relative to different regions. All features in a region are
written in binary form, one vector after another.
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3.3 The FeatureCalc box

In addition to the data storage unit with I/O functions, we need another one that
calculates the features. This is what the FeatureCalc class is intended to do. It
inherits from Box since it is a processing unit.

This box accepts a YUV420Image object as its input and a FeatureMatrix as
its output. This is the only configuration accepted, or scheme in the LTSPlatform
jargon. However one can easily add another scheme to accept another image types
as input.

The YUV420Image is an image format for color images in the YUV color space
with the chrominance components, U and V, downsampled by two in the horizontal
and vertical directions, the luminance being stored at full resolution.

In the LTSPlatform one can instantiate images of no matter what type of ele-
ments: they can be floats, ints, unsigned chars, etc.; but the only one actually
used is unsigned char (integers from 0 to 255), which is the only one that Fea-

tureCalc accepts.

The specifications of the features to calculate are given as parameters. Some
parameters are mandatory and some are optional, having a default value.

The mandatory parameters are: the feature type, the horizontal window size and
the vertical one. These are actually arrays of parameters, where each position in
the arrays corresponds to one different feature.

The optional parameters are: the color component and a “new-image” flag. The
color component parameter is an array specifying the color component (Y, U or V)
on which the calculation of each feature should be carried out. If it is not given it
defaults to the luminance (Y) for all features.

The “new-image” parameter is just a flag. If 0 it indicates that the FeatureMa-

trix given for the output already contains calculated features for the given image,
and only those that differ in specification should be calculated. If not given, or if
it is not 0, the box assumes that the image at the input is a new image and that
all specified features should be calculated. This last parameter makes it possible
to add features to the FeatureMatrix without recalculating the features that have
already been calculated.

When the FeatureCalc is called (with the member function process) it reads all
given parameters and starts calculating every specified feature. To actually calculate
these features one function is defined for each feature that implements the algorithms
given in Sec. 2.
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Once a feature has been calculated the feature specification is written to the
FeatureMatrix before calculating the other ones. This makes it possible to make a
feature calculation dependent on another one, as it is the case of the local average
with the sigma filter (sigavg) that depends on the local standard deviation (std).
The calculation function tries to find in the FeatureMatrix the needed feature, if
it is not found it adds it to the FeatureMatrix by first resizing it and then calling
the function that calculates the needed feature. The automatically added features
are deleted once that all specified features have been calculated.

If a new feature type is introduced all that has to be done is to define a function
that implements the algorithm and add the type definition to FeatureMatrix as
explained in the previous section.

In order to facilitate the implementation of filtering functions a new class has
been defined that inherits from MatrixIO, called MtxBlock. A member function of
this class returns a window of an image given the center coordinates and the size. It
handles automatically the border problems (i.e when part of the window lies outside
the image) by mirroring the inner pixels. Two variants of this last function have
also been written: one that implements the marking of outliers for the sigma filter,
and one that implements the mirroring of pixels based on the gradient information
as explained in Sec. 2.3.

These functions enable the user to easily write new feature calculation functions
without having to worry about the border problems, so one can write the code to
try out a feature in less time. However there is a penalty: the execution speed is
not as high as with a specific implementation for each feature; but this execution
time difference have proven to be minimal (except with the function implementing
the mirroring with the gradient information).

Finally, as it has been said before, it is possible to add new color spaces. For
each new color component a transformation to get it from the image data has to be
added and the rest is done automatically (a more detailed explanation can be found
in the source code).

3.4 The feature program

With the two classes explained above, FeatureMatrix and FeatureCalc, it is pos-
sible to implement the calculation of features in a program and then to use the
result. However to make the testing of the features practical it is necessary to write
a program that uses those classes and that needs not to be recompiled each time
one wants to change the specifications of the features to calculate.
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This is why the feature program has been written. It is basically a program
that calculates the features, as specified in a file, on the given image and that saves
the results in several file formats as specified with the command line options.

This program has a simple user interface and an on-line help. It reads any image
file format that the LTSPlatform is able to read. For the image formats that don’t
have a size specification in the file itself, such as YUV or raw gray level, the size can
be given in the command line.

The configuration file, where the specifications of the wanted features is given, is
a text file. The specifications given are: the name of the feature, the horizontal size
of the window, the vertical size of the window and the color component on which to
calculate the feature. For example it can contain the following,

avg 5 5 y

var 5 5 y

The configuration file given above tells the program to calculate the local average
and the local variance, both with a 5×5 window and on the luminance of the image,
in that order. The possible names for the features currently are,

norm a copy of the image data, no processing is done.

avg the local average, with no special handling.

std the local standard deviation, with no special handling.

var the local variance, with no special handling.

hstd the horizontal standard deviation as explained in Sec. 2.2.

hvar the horizontal variance as explained in Sec. 2.2.

vvar the vertical standard deviation as explained in Sec. 2.2.

vvar the vertical variance as explained in Sec. 2.2.

hsob the result of applying the horizontal Sobel operator.

vsob the result of applying the vertical Sobel operator.

sob the magnitude of the gradient estimated with the Sobel operator.

svar the local variance calculated with mirroring using the gradient in-
formation as explained in Sec. 2.3.

sigavg the local average calculated with a sigma filter.

sigstd the local standard deviation calculated with a sigma filter.
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sigvar the local variance calculated with a sigma filter.

sighstd the horizontal standard deviation calculated with a sigma filter.

sighvar the horizontal variance calculated with a sigma filter.

sigvstd the vertical standard deviation calculated with a sigma filter.

sigvvar the vertical variance calculated with a sigma filter.

sasigstd the local standard deviation calculated with a sigma filter and
with the marking of outliers done on sigavg.

sigstdmed the local standard deviation calculated with a sigma filter
and passed trough a 3 × 3 median filter.

sasigstdmed the local standard deviation calculated with a sigma filter
and with the marking of outliers done on sigavg, passed trough a
3 × 3 median filter.

sigsigstd the local standard deviation calculated with a sigma filter and
passed trough a 3 × 3 averaging sigma filter.

test a temporary name to test new features. Currently nothing.

The possible names for the color components currently are,

y the luminance or gray level (more precisely the Y component of the
YUV space).

u the U chrominance component of the YUV color space.

v the V chrominance component of the YUV color space.

Other feature types or color components could be added in the future, as it was
explained in the previous section. It is clear that some of the named features are
not useful for the segmentation algorithm but they are needed by other features to
be calculated (for example sigavg needs std).

The configuration can be stored in any file, the name being given in the command
line to the feature program. For a detailed syntax of command line options and
arguments refer to the source code or type ‘feature.x -h’ at the command prompt.

3.5 Vector quantization programs

To test the robustness of the features we used vector quantization [2] as it is explained
in Sec. 4.
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For the vector quantization we used the public domain programs written by Eve
Riskin at Stanford University: stdvq and stdvqe. The first one is the one that does
the training and the second one is the coder.

The training is actually the search of a set of vectors that minimizes the mean
square error to encode the given data. The resulting set of vectors, or codewords, is
called a codebook and its size is fixed by the user.

The coder takes a set of vectors and replaces each one of them by the closest
one that is found in the given codebook. Then we can say that each encoded vector
belongs to a region, corresponding to a particular codeword.

The stdvq program has been taken without any modifications, the input to it
are the vectors of features that the feature program outputs, in raw binary format.

The stdvqe program, the coder, has been slightly modified so that it saves the
index of the codeword assigned to each vector in the input data. These can be saved
as a gray level image in pgm format (with automatic scaling to enhance the contrast
between indices) or as an image in raw format.

More detailed information can be found in the source code of these programs.

3.6 Utility programs

In addition to the programs described above (feature, stdvq, stdvqe) a library
of other utility programs was written. These convert between different file formats,
extract regions from an image, etc. Also, since the programs written work on one
image at a time, UNIX shell-scripts to automate the process with sequences were
written.

The utility programs that have been written using the LTSPlatform are:

mergereg.x merges feature vectors from several files (saved in raw bi-
nary format) in one file. Each input file contains the features be-
longing to a region of the image. A file defining the regions (seg-
mentation file) must be given.

extractreg.x extracts the specified regions from a given image in
YUV420 file format over a background (white by default). A seg-
mentation file, defining the regions, must be given.
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fmraw2img.x converts a FeatureMatrix file saved in raw binary format
to an image format as one file per feature. The image file formats
supported are: pgm, raw gray level and pure ASCII (readable by
MATLABtm).

anytoyuv420.x converts an image in any file format readable by the
LTSPlatform to the YUV420 format in 3 files.

yuv420toppm.x converts an image in the YUV420 file format (3 files)
to the ppm “rawbits” file format.

Other utility programs were written in straight C, without using the LTSPlat-
form. They are:

doub2ascii converts from binary doubles to ASCII to the standard
output. Numbers can be grouped in lines with an optional argu-
ment. It is used to read the codebooks found by stdvq.

float2ascii like the above program but converts from binary floats.

endianconv converts data between little-endian and big-endian byte or-
dering and vice-versa. It is used to exchange binary data between
machines with different byte ordering.

scalefeat scales a feature saved in a file in raw binary format by the
given scale factor. It can be modified in the input file or copied into
another file.

logscalefeat like scalefeat but it takes the logarithm of the feature
before multiplying it (actually it does f · log10(1 + x), where f is
the scaling factor and x the feature value).

uchar2float converts from binary unsigned char data to binary
float data. Used to make the stdvq program take an image for
the training.

The UNIX shell-scripts (csh or tcsh) written to automate some tasks are:

mkfrdir copies a YUV420 sequence to directories as one directory per
frame, which is the directory structure used by the other scripts. It
can also make symbolic links instead of copying the files.

fvq runs the feature, stdvq and stdvqe programs on a given image.
It has options to scale or logscale a feature. The result is a segmen-
tation based on the specified features.
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fvqnf same as fvq but skips the feature program, it uses the feature
data already there.

fsvq runs the stdvq and stdvqe programs on an existing feature data in
a per region basis, where the regions are specified in a segmentation
file.

favq runs the feature, stdvq and stdvqe programs on all the frames
of a given sequence. The codebook is calculated for each frame
and its used to encode that frame only. It has options to scale or
logscale a feature. The result is a segmentation for each frame (it
is like running fvq on each frame separately).

ffvq runs the feature, stdvq and stdvqe programs on all the frames of
a sequence. The codebook is calculated for only one frame (specified
in the command line) and then it is used to encode all the frames
in the sequence. It has options to scale or logscale features. The
result is a segmented sequence.

ffvqmovie displays the results of ffvq, the segmented sequence, as a
movie on an X display.

ffvqext extracts, using the extractreg.x program, the specified re-
gions from a sequence previously segmented with ffvq. The re-
sult is a sequence displaying the extracted regions on a background
(white by default).

ffvqextmov displays the results of ffvqext, the extracted sequence, as
a movie on an X display.

For more detailed information about all the options of the above programs and
scripts refer to their online documentation or their source code.
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4 Results of segmenting in the feature space

4.1 Segmenting with vector quantization

In order to test the robustness of the features explained in Sec. 2 we need to perform
a segmentation in the feature space. That is what vector quantization [2] is used
for, since no other available segmentation programs can work in the feature space
(i.e in a vector scheme).

Vector quantization is normally used to quantize an image in an optimal way,
with minimum distortion. The vectors used in that case are picture elements and
the training consists in finding a set of vectors, of fixed size (not necessarily found in
the image), that minimizes a given measure of distortion. The set of vectors found
is called the codebook, and the vectors found in it are called codewords.

In our application the goal of the vector quantization is different. We applied the
techniques developed for vector quantization in the multidimensional feature space.
The main difference resides in the fact that the vectors used are not picture elements
but the vectors in the feature space (i.e the vectors of the FeatureMatrix). As a
consequence we do not obtain an encoded image but an encoded FeatureMatrix,
and the codewords are vectors of features.

Since in the encoded FeatureMatrix there is only a small number of different
feature vectors (the ones found in the codebook) we can make up an image where the
pixel values are the indexes of these vectors. We obtain then an image representing
the distribution of the codewords in the encoded FeatureMatrix. We can say then
that the original image is dived in a small number of classes.

This classes not only apply to the original image but also to the FeatureMatrix

associated to it. Each class in that one contains feature vectors that resemble each
other because the codebook minimizes the encoding error. If we set the size of the
codebook relatively small what we obtain is actually a segmentation, where each
class mentioned above is a region of the segmentation.

As it is shown in the following sections this segmentation method works fairly
well. However it is not a real segmentation algorithm because it doesn’t take into
account the physical distance in the image: a class can be divided in two parts that
are very far apart. Moreover isolated pixels are not merged to neighboring classes,
they remain isolated.

Even if the vector quantization is not a real segmentation algorithm it is very
useful to test the robustness of the features because the flaws mentioned in the
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Figure 17: an example of a segmentation obtained by vector quantization with 8
regions (i.e. codebook size of 8).

previous paragraph are not relevant to judge that.

As an early example of what kind of segmentation can be obtained we show, in
Fig. 17, one done on the image of Fig. 1. The vector quantization was run with a
codebook of size 8, so there are 8 regions in the segmentation.

4.2 Still image segmentation

The goal of this study is to extract objects from sequences. However the features
have been tested first on still images to determine the most suitable ones.

After all the tests we have determined that the perfect combination of features
does not depend too much on the image type. The local average of the gray level,
calculated with the sigma filter, is the most important one. If the image is in color
then the use of the local averages calculated with the sigma filter of the chrominance
components improves significantly the result.

As an example we can see the segmentations obtained in Figs. 19 and 20 of
the image shown in Fig. 18. It is clear from these examples that using the sigma
filter to calculate the average improves a lot the precision of the limits between the
regions and lets appear fine details in them. Moreover if the sigma filter is not used
there appears a border line between some regions that is non-existent in the original
image. This is because of the indiscriminate averaging of pixels inside the window
that transforms step edges in gradual ones.

The window size used for the calculation is not very critical but the 5×5 window
seems to be the best choice, it gives better results than 3 × 3 but is slower to
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Figure 18: image used for the segmentation examples in gray (left) and color (right).

Figure 19: segmentation obtained using the local average, avg, of only the gray level
(left) and of the three color components Y, U and V (right). The window size used
was 5 × 5 and the number of regions was fixed to 4 (note that no sigma filter was
used).

Figure 20: segmentation obtained using the local average with the sigma filter,
sigavg, of only the gray level (left) and of the three color components Y, U and V
(right). The window size used was 5 × 5 and the number of regions was fixed to 4.
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calculate. Larger windows are not useful since the segmentation results do not
improve, compared to the 5 × 5 window, and the calculation time is much longer.

One can also see from the examples given that the use of the chrominance com-
ponents, U and V, gives significantly better results than the use of the luminance
alone. In the different segmentations that are shown one can see that the result is
almost perfect when the color information is taken into account and the sigma filter
is used. Only some fine lines of the sea are erroneously segmented.

From the discussion above it should be clear that one should always use the local
average calculated with the sigma filter on the gray level for the segmentation, and
also the averages on the chrominance components if the image is in color. This not
only applies to the image shown here but to a wide variety of them. Some other
examples are given in the next section.

Concerning the texture information the choice of features is not as straightfor-
ward as with the local averages. In Figs. 21–24 examples of segmentations using
the local standard deviation calculated in four different forms are given. The local
standard deviation is preferred over the local variance because the edge problem
mentioned in Sec. 2 is less important in the standard deviation even though it rep-
resents the different textures fairly well. In all the examples shown the standard
deviation is scaled by 5 so it has a weight similar to those of the local averages
in the vector quantization (the dynamic range of the standard deviation is much
smaller than that of local averages).

Only the luminance is used for the standard deviation and variance, since the
ones of the chrominance components is not very significant.

In the examples given it is clear that, when the chrominance components U and
V are not taken into account, using the standard deviation significantly improves
the quality of the segmentation. However the differences between the four methods
shown are minimal. The best results are obtained when the local standard deviation
is as calculated as sasigstd. The better performance is due to how the outliers are
marked because, since this respects better the fine details. The use of the median
filter in the example degrades the segmentation, nevertheless this filter can become
useful in images where the edge problem explained in Secs. 2.2 and 2.5 is stronger
than in the example given here.

When the chrominance components are taken into account the improvement
over the segmentation without the standard deviation is not as dramatic as in the
gray level case. The best performance is obtained when the standard deviation is
calculated as sasigstd, as it is the case when only the gray level is taken into account,
even though the differences with the standard deviation calculated with the simple
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Figure 21: segmentation obtained using the local standard deviation sigstd of the
luminance and the local average sigavg of only the gray level (left) and of all three
color components (Y, U and V) (right). The window used was 5×5 and the number
of regions was fixed to 4. The standard deviation has been scaled by 5.

Figure 22: segmentation obtained using the local standard deviation sigstdmed of
the luminance and the local average sigavg of only the gray level (left) and of all
three color components (Y, U and V) (right). The window used was 5 × 5 and the
number of regions was fixed to 4. The standard deviation has been scaled by 5.
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Figure 23: segmentation obtained using the local standard deviation sasigstd of the
luminance and the local average sigavg of only the gray level (left) and of all three
color components (Y, U and V) (right). The window used was 5×5 and the number
of regions was fixed to 4. The standard deviation has been scaled by 5.

Figure 24: segmentation obtained using the local standard deviation sasigstdmed of
the luminance and the local average sigavg of only the gray level (left) and of all
three color components (Y, U and V) (right). The window used was 5 × 5 and the
number of regions was fixed to 4. The standard deviation has been scaled by 5.
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sigma filter (sigstd) are almost insignificant. As in the previous case the use of the
median (sigstdmed and sasigstdmed) filter deteriorates the segmentation.

Another series of examples is shown in Figs. 26–31 for another image, which is
shown in Fig. 25 in gray level and color. The remarks on the local averages made
for the previous example remain valid: the segmentation is significantly improved
when the sigma filter is used, and the use of the chrominance components are very
important, they should be used whenever they are available.

One can see that even when the only feature taken into account is the average
gray level calculated with the sigma filter, the arm, the ball and the racket are well
segmented. However, the background and the table are oversegmented, specially the
background, and the table white border does not come out very well.

Adding the standard deviation to the last case, in any of the four forms, does not
significantly improve the segmentation, not as in the San Francisco bay image. The
major improvement occurs in the table but it is not very significant. This is because
there are not many textured regions, the only one being the background. Moreover
the background has a sort of “macro” texture that it is not well reflected by the
local standard deviation since the window size is not very big. However a larger
window size cannot be taken because the edge problem becomes too important and
it renders the estimation unusable.

In the color case one can see that the obtained segmentation is far better than
in the gray level case. All regions are well segmented, with the exception of the
hand that is an object fairly complicated, with too many different regions. The
background is separated in two but this is not very important since we aim to a su-
pervised segmentation, the most important thing is that it should be well separated
from the other regions, as it is, and not oversegmented.

When the standard deviation is included in the color case the background comes
out as one region and not two or three as in the other cases. Even if the standard
deviation is not a good “measure” of the background texture it is enough to make
it one region when the color information is present. However this is also enough to
divide the ball in two regions.

In both cases, color and gray level, the different methods to calculate the standard
deviation give quite different results. The best one is obtained with the use of only
a sigma filter.

As a general rule one should not use the standard deviation or variance when
the image does not contain any textured regions. In those cases using it degrades
the segmentation quality because of the problem with the edges. Also when there
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Figure 25: image used for the segmentation examples in gray (left) and color (right).

Figure 26: segmentation obtained using the local average avg of only the gray level
(left) and of the three color components Y, U and V (right). The window size used
was 5 × 5 and the number of regions was fixed to 8 (note that no sigma filter was
used).

are very few textured regions using the standard deviation does not help much and
sometimes it can even degrade the result, depending on the image type.

It should also be noted that if the standard deviation is to be included among
the features used in the segmentation the choice of the best method to calculate it
depends on the image too. When there are borders in the objects, like the white one
in the table, marking the outliers on the local average calculated using a sigma filter
degrades the segmentation, one should only use it when there are no such regions in
the image. Moreover, the median filter should be used whenever the edge problem
is important at the expense of shifting the borders a little bit.
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Figure 27: segmentation obtained using the local average sigavg of only the gray
level (left) and of the three color components Y, U and V (right). The window size
used was 5 × 5 and the number of regions was fixed to 8.

Figure 28: segmentation obtained using the local standard deviation sigstd of the
luminance and the local average sigavg of only the gray level (left) and of all three
color components (Y, U and V) (right). The window used was 5×5 and the number
of regions was fixed to 8. The standard deviation has been scaled by 2.

Figure 29: segmentation obtained using the local standard deviation sigstdmed of
the luminance and the local average sigavg of only the gray level (left) and of all
three color components (Y, U and V) (right). The window used was 5 × 5 and the
number of regions was fixed to 8. The standard deviation has been scaled by 2.
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Figure 30: segmentation obtained using the local standard deviation sasigstd of the
luminance and the local average sigavg of only the gray level (left) and of all three
color components (Y, U and V) (right). The window used was 5×5 and the number
of regions was fixed to 8. The standard deviation has been scaled by 2.

Figure 31: segmentation obtained using the local standard deviation sasigstdmed of
the luminance and the local average sigavg of only the gray level (left) and of all
three color components (Y, U and V) (right). The window used was 5 × 5 and the
number of regions was fixed to 8. The standard deviation has been scaled by 2.
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4.3 Sequence segmentation and object tracking

In order to segment a sequence it is not enough to perform a good segmentation in
each frame, it is necessary that a correspondence between the regions in one frame
and the regions in another one can be established.

In the previous section we have shown features that perform well for still image
segmentation. But how do these features behave in time? As it is shown later in this
section the features that we have found do not vary much from frame to frame. This
makes it possible to establish the correspondence of regions across the sequence.

The first series of tests done for the sequences consists in comparing the centroids
of the regions, or codewords, obtained from doing a training in each frame. The
corresponding segmentations are shown for a few of the frames in Fig. 32. Also the
graphics representing the evolution of the centroids across frames for each region
are shown in Fig. 33 (the regions are numbered from black to white: 1 is black 8 is
white).

The features used for those segmentations are the local averages of the luminance,
Y, and chrominances, U and V, calculated as sigavg, and the local standard deviation
of the luminance, calculated as sigstd ; all of them on a 5 × 5 window. The local
standard deviation is scaled by 2. This is the best configuration for the table tennis
sequence as shown in the previous section.

One can see that the regions are quite stable, they do not vary much from one
frame to another. The only major problem is the background that sometimes is
split in two and then merged again. From the graphics showing the evolution of the
centroids for each region one can see that they remain stable most of the time. The
only large variations occur in region 3 when it changes from a part of the ball to a
part of the background, and in region 6 when it changes from including the wrist
and not including it. Concerning region 8 the centroids vary because the region
containing the racket and the upper part of the arm changes in size.

From the above one can see that the features are quite robust, the centroids
suffer little disturbance despite the changing regions. However the results above are
not stable enough to easily segment a sequence, the splitting and merging of regions
makes it difficult to use it.

As a second series of tests we segmented again the whole sequence but using
the codebook obtained in the first frame to run the vector quantization on all other
frames, instead of doing the training for each frame as in the examples above.
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Figure 32: the segmentations obtained in the frames 1, 6, 11, 16, 21, 26, 31 and 36
of the sequence. The training for the vector quantization is done in each frame. The
number of regions is fixed to 8.
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Figure 33: the evolution of the centroids of region 1–8 (from left to right and top to
bottom) across the 39 frames tested.



4 RESULTS OF SEGMENTING IN THE FEATURE SPACE 43

Figure 34: the segmentation obtained for the frames 1, 6, 11, 16, 21, 26, 31 and 36
(from left to right and top to bottom), using the codebook of frame 1.

The results are very encouraging. An example of what is obtained is shown for
the same sequence in Fig. 34. The features used are the same as in the previous
example.

One can see that the segmented regions do not change across the frames, they
remain the same. Nevertheless the segmentation perfectly follows the movements of
the different regions. This is really what is wanted: being able to segment a frame
and then follow the regions in the other frames of the sequence.

It should be clear that this strategy of using the codebook obtained with the first
frame without doing any kind of update as the frames change cannot be pushed too
far. If the image changes too much the codebook would not be adapted and then
the algorithm could fail. A method to do an update of the codebook has to be found
to be able to do this kind of segmentation in longer sequences. However that is not
what was intended to do here, we concentrated more in founding the right features
and testing their robustness than finding an smart segmentation algorithm adapted
to our purposes.

As the last example of this sequence we show the result of extracting, on a white
background, the arm, ball, hand and racket using the segmentation shown above.
Some of the frames of the result are shown in Figs. 35.

As the very last example we show the same results on another sequence (Figs.
36 and 37). The procedure used is the same as for the table tennis sequence but the
features taken into account are only the local averages of the luminance, Y, and the
chrominances, U and V, calculated as sigavg. The local standard deviation is not
used since this sequence does not have any textured regions.
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Figure 35: example of the extraction of some regions in the frames 1, 6, 11, 16, 21,
26 and 31 (from left to right and top to bottom). The segmentation used is the one
based on the codebook of only the first frame.

Figure 36: the segmentation obtained for the frames 0, 5, 10, 15, 20 and 25 (from
left to right and top to bottom), using the codebook of frame 0.

The number of regions used is 16, what gives an oversegmentation, since 8 regions
is not enough for the image. Unfortunately the number of regions with the vector
quantization algorithm can only be fixed to a power of two (the reason for this is
that it uses binary splitting).

One can see that the algorithm does not work as well as with the table tennis
sequence. However the result should be greatly improved by using a smart, or real,
segmentation algorithm that works in the feature space.
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Figure 37: another example of the extraction of some regions in the frames 0, 5, 10,
15, 20 and 25 (from left to right and top to bottom). The segmentation used is the
one based on the codebook of only the first frame.
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5 Future improvements

5.1 Motion fields

The main application of the feature space as described here is the segmentation of
sequences. Since the objects normally do not suffer from deformation each point in
them has the same movement. One can then use the motion information to improve
a segmentation, or even base the algorithm entirely on that kind of information.
This is used in a wide variety of segmentation algorithms.

Including the dense motion fields in the feature space should significantly im-
prove the segmentation (by dense we understand that is calculated for every pixel).
Currently a program to calculate this motion fields is being developed at the lab
and will be integrated to the ones use in this project in the near future.

However the integration of this information is not as straightforward as it seems.
Just including the motion fields as one more feature in the vector quantization
would not work for a sequence because the motion changes in time, even though it
is uniform for an object (the motion it is not a constant in time of an object like
the color). As a consequence using the codebook of the first frame to do vector
quantization on the others would give erroneous results.

One way to integrate the motion fields in the feature space could be to do a
separate segmentation for two adjacent frames, using the motion fields in each one,
and then try to establish a correspondence of the regions based on the centroids
of the constant features only (like local averages) and forgetting the ones for the
motion fields.

5.2 New features

The features that one can include in the feature space are obviously not limited to
the ones used here.

As other features one can imagine calculating the variance, or standard deviation,
in some ways that reflect better the “macro” textures. One idea is to calculate it
over a checker board or to calculate the horizontal variance taking into account only
1 every 2 columns, or analogously the vertical one taking into account 1 every 2
lines.

Another features that could be integrated are of a totally different nature. These
are features used in other systems to determine the best coding algorithm for each
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region with its optimum parameters [8]. If included in the feature space one could
obtain a segmentation with the coding parameters all at once.

6 Conclusion

As it has been shown in the previous sections trough several examples the feature
space approach constitutes a very interesting and promising method to do a seg-
mentation.

The segmentations obtained show that the system is capable of segmenting and,
most important of all, tracking the regions, even tough the segmentation algorithm
is not very smart and that no motion information was used. No tradeoff is done
between moving and non-moving objects as is the case in other algorithms.

The power of this approach resides on the fact that the features are considered
altogether (the vectors are treated as one entity on its own) and not in an iterative
or competitive fashion.

Another advantage of this method that has not been mentioned yet is that there
are no parameters that one has to fix specifically for an image. The only adjustments
that one has to do is to decide the features to include in the vectors and an eventual
scaling of some of these features. As we have seen is fairly easy to determine those
ones from just knowing the type of regions in the image.

Also a non-negligible part of this project are the programs and software library
that were developed. This represents more than 6000 lines of code that will be
integrated into the LTSPlatform for the use of other people at the lab.

In my opinion the feature space approach, with the set of features studied here,
constitutes a robust mean of doing a segmentation where the user does not have to
try many different configurations before finding the most suitable one. It suffices
from following some common sense rules mentioned in the previous sections.

Diego Santa Cruz

Lausanne, February 21, 1997
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