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ABSTRACT

This paper proposes an efficient method to estimate the distance
between discrete 3D surfaces represented by triangular 3D meshes.
The metric used is based on an approximation of the Hausdorff
distance, which has been appropriately implemented in order to re-
duce unnecessary computations and memory usage. Results show
that when compared to similar tools, a significant gain in both
memory and speed can be achieved.

1. INTRODUCTION

In the last decade, many new compression techniques adapted to
images, sounds, and more recently 3D-models have been devel-
oped, and many more are foreseen in the next years. The grow-
ing amount of transmitted data through the Internet has also raised
the problem of watermarking, which is usually achieved through
modification of a content in a non-perceptible way to embed an in-
formation. Compression and watermarking share a common goal,
which is to minimize the distortions added to the original signal
while maximizing the compression ratio, the strength or the ca-
pacity of the watermark.

In the case of 1D-signals and images, many distortion mea-
surements have been studied. They range from the simple ana-
lytic methods such as the mean square error (MSE) to much more
elaborate techniques based on the characteristics of human per-
ception [1]. Despite the constantly growing number of techniques
related to 3D models, the distortion measurements for such data
have only been sparsely covered. One of the simplest approaches
in order to provide an MSE-like measurement for 3D models is to
use the Hausdorff distance, which is a very generic technique to
define a distance between two nonempty sets. The Hausdorff met-
ric has already been used when addressing the problem of mesh
simplification[2].

In this paper, we present an efficient tool to evaluate the dis-
tance between 3D models, similar to Metro[3]. The paper is
organized as follows. Section 2 will present the Hausdorff dis-
tance, and the measurements based on this distance. Section 3 will
present the details of the implementation of these metrics, and sec-
tion 4 will focus on the analysis. Conclusions are drawn in section
5.

2. HAUSDORFF DISTANCE BETWEEN TRIANGULAR
MESHES

While digital image/signal techniques require a one-to-one map-
ping between the samples of the original data and the samples from
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the modified version, such a constraint would practically be too re-
strictive in the case of 3D models. Many methods applied to 3D
models imply a change of topology, in addition to purely geomet-
rical distortions, which justifies the choice of the Hausdorff metric
to perform measurements over this type of data, instead of a simple
vertex to vertex metric.

2.1. Notations

For the sake of simplicity, we will only present the case of discrete
3D models represented by triangular meshes, since this is the most
generic representation of such data. A triangular mesh M will be
represented by a set P of points in

� 3 (vertices), and by a set T of
triangles describing how the vertices from P are linked together.
We will denote by S and S ′ two continuous surfaces.

2.2. Hausdorff distance

Let us first define the distance d(p,S ′) between a point p belong-
ing to a surface S and a surface S ′ as:

d(p,S ′) = min
p′∈S′

‖p − p′‖2, (1)

where ‖.‖2 denotes the usual Euclidean norm. From this defini-
tion, the Hausdorff distance between S and S ′, denoted by d(S,S ′)
is given by:

d(S,S ′) = max
p∈S

d(p,S ′).

It is important to note that this distance is in general not symmetri-
cal, i.e. d(S,S ′) 6= d(S ′,S). We will refer to d(S,S ′) as forward
distance, and to d(S ′,S) as backward distance. It is then conve-
nient to introduce the symmetrical Hausdorff distance ds(S,S ′),
defined as follows:

ds(S,S ′) = max � d(S,S ′), d(S ′,S) � . (2)

The symmetrical distance provides a more accurate measurement
of the error between two surfaces, since the computation of a “one-
sided” error can lead to significantly underestimated distance val-
ues, as illustrated by figure 1.

The computation of the Hausdorff distance between two dis-
crete surfaces M = (P, T ) and M′ = (P ′, T ′) relies on the
previous definitions. We will focus on the computation of the for-
ward Hausdorff distance, i.e. d(M,M′), since the symmetrical
distance can be simply obtained from the computation of the for-
ward and backward distances. The distance between any point p
belonging to M (p might not be in P) and M′ can be computed
analytically, since it can be reduced to the minimum of the dis-
tances between p and all the triangles T ′ ∈ T ′. When the orthog-
onal projection p′ of p on the plane of T ′ is inside the triangle, the
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Figure 1: In this case, d(S,S ′) will remain much smaller than
d(S ′,S), since here d(A,S ′) � d(B,S). Thus a small one-sided
distance does not imply a small distortion.

point-to-triangle distance is nothing but a point-to-plane distance.
When the projection lies outside T ′, the point-to-triangle distance
is the distance between p and the closest point p′′ of T ′, which
is necessarily on one of the sides of T ′ (see figure 2). Although

p

p′

T ′
p′′

Figure 2: The distance between p and T ′ is the distance between
p and the closest point of T ′, lying on one of its sides.

d(p,S ′) can be computed analytically for any point p, it is neces-
sary to resort to sampling to obtain the maximum for p ∈ S . Each
triangle of T is sampled, and the distance between each sample
and M′ is computed. The sampling of each triangle is done in the
following way : two sides of the triangle are considered as direc-
tions for the sampling lattice. According to a length criterion (see
section 3 for more details), each side is sampled with n points.
Using the directions, it is then easy to build a “regular” grid over
the considered triangle (see figure 3). According to this sampling
pattern, n(n + 1)/2 samples are created in each triangle. One in-
teresting property of this sampling is that the triangle can be easily
split into smaller triangles having all the same area, which leads to
significantly simpler computations of integrals over a surface (cf.
section 2.3).

Figure 3: Illustration of the sampling performed on triangles, for
n = 5. The sides used as main directions are drawn in bold lines
and the samples are materialized by the black dots.

2.3. Mean and mean square error

The point-to-surface distance defined in (1) can be used to define
a mean error dm between two surfaces S and S ′ :

dm(S,S ′) =
1

|S|

���
p∈S

d(p,S ′)dS, (3)

where |S| denotes the area of S . From this, the definition of a root
mean square error drmse follows naturally :

drmse(S,S ′) = � 1

|S|

���
p∈S

d(p,S ′)2dS. (4)

Using equation (2), it is possible to define symmetrical versions of
the mean and root-mean-square errors.

The computation of such quantities in the case of discrete mod-
els is rather simple, provided the error values (see figure 3) have
been computed for each sample. The integral of the (squared) er-
ror over the whole surface is computed by summing the contribu-
tions of all the parallelograms formed by 4 samples (see figure 3),
plus the boundary triangles. Let us denote by xi,j , xi+1,j , xi,j+1,
xi+1,j+1 four samples inside a triangle, and by ei,j , ei+1,j , ei,j+1,
ei+1,j+1 the error value associated with each sample. The integral
of e over the parallelogram formed by the x samples can be divided
into two triangles as shown in figure 4. Let us now focus on the
integral of e over the triangle Ti,j = (xi,j , xi+1,j , xi,j+1). The
simplest way of computing the integral of the error is to linearly
interpolate between the values ei,j , ei+1,j and ei,j+1. A property
of the sampling method proposed in section 2.2 is that inside each
triangle from T , the samples are easily triangulated, as shown in
figure 4, and all the resulting triangles have the same area. The
value of the integral is then |Ti,j | ·

ei,j+ei+1,j+ei,j+1

3
. The in-

tegral of e2 over the same triangle is also computed using linear
interpolation between the values of e (which leads to quadratic in-
terpolation between the values of e2), and finally the value of the
integral is :

|Ti,j |

6 � ei,j(ei,j+ei+1,j+ei,j+1)+ei+1,j(ei+1,j+ei,j+1)+e2
i,j+1 � .

ei,j+1

ei+1,j+1

xi+1,jxi,j

ei,j

xi+1,j+1

xi,j+1 ei+1,j

Figure 4: Computation of the integral of e over the surface.
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3. IMPLEMENTATION

The algorithm outlined in the previous section has been imple-
mented in the Mesh tool using the C/C++ language, using dou-
ble precision floating-point arithmetic. Although straightforward,
the algorithm becomes too complex if implemented naively. In
fact, for each sample point p it would be necessary to calculate
the distance to all triangles T ∈ T ′ in order to find the minimum.
This leads to a complexity O(NpNT ′ ), where Np is the number
of sample points taken on M and NT ′ is the number of triangles
of T ′. While this could be acceptable for small models, it becomes
unmanageable for large models and a large number of samples. In
order to reduce the complexity it is necessary to reduce the number
of point-triangle distances that need to be evaluated, as explained
below. The sample points are obtained by sampling the triangles
T ∈ T according to the value n (cf. section 2.2). It is desired to
have a uniform sampling density of 1/δ2, where δ is the sampling
step (fixed by the user as a percentage of the diagonal length of
the model’s bounding box). The sampling frequency should then
be n′ = � 1/4 + 2|T |/δ2 − 1/2, where |T | is the area of T . In
general n′ is not integer. We thus randomly choose n = bn′c or
n = bn′c + 1 for each triangle, with probability ρ and 1 − ρ,
respectively. The probabilities are chosen such that the expected
value of the resulting sampling density, E � n(n + 1)/(2|T |) � , is
1/δ2. Solving for ρ gives ρ = bn′c/2 + 1 − |T |/ � δ2(bn′c + 1) � .

3.1. Hausdorff distance evaluation

One effective technique to achieve a large reduction of the number
of point-triangle distance evaluations, also used in [3], is to use a
uniform grid. The joint bounding box of M and M′ is partitioned
into non-overlapping cubic cells of side-length ∆. The set of tri-
angles T ′ is indexed by constructing, for each cell C, the list of
triangles intersecting it. For each sample point p ∈ M we need to
calculate the minimum distance to the triangles T ′ ∈ T ′. Let C̄ be
the cell in which p is located and Dl(C̄), l ∈ � , the set of cells that
are at a distance l∆ from C̄ along one of the coordinate axes. The
sets Dl(C̄) can be thought of as layers of a cube centered around
C̄. First the distances from p to all the triangles intersecting C̄ are
calculated, and their minimum retained. Let d̂p denote this current
minimum. Then, for each value of l we consider each of the cells
in Dl(C̄). If a cell C is farther from p than d̂p, it is skipped. Oth-
erwise the distances from p to all triangles intersecting C are cal-
culated and d̂p updated accordingly. This procedure is performed
for increasing values of l until d̂p is smaller than l∆. At this point
d̂p is the minimum distance from p to all of the triangles T ′ ∈ T ′.

One important parameter is ∆, which determines the total num-
ber of cells. It should be chosen so that there is a good equilibrium
between the speedup gained by using cells and the overhead of
handling them. We define an average triangle T̄ ′ that is the equi-
lateral triangle having an area equal to the average triangle area of
T ′. Then we set ∆ = cµ, where µ is the side length of T̄ ′ and c
a fixed constant. Empirically we have found c = 1 to be a good
value, suitable for a wide variety of models. Another important
aspect is that, since M′ represents a surface, the majority of cells
are empty (i.e. they have no intersecting triangles). The emptiness
of a cell is evaluated very often, in particular when M and M′

differ significantly, and it is thus worthwhile having a fast method
of doing it. To this end we construct a bitmap indicating empty
cells. The bitmap has usually a small memory footprint, even for
large models, allowing it to stay almost permanently in the com-

puter’s L2 memory cache and thus providing a very fast evaluation
method. Using this approach, no more than 5 to 50 triangles are
tested per sample, instead of thousands.

3.2. Point to triangle distance evaluation

The use of the cell partition greatly reduces the number of point-
triangle distance evaluations. However, it is still necessary to be
able to evaluate them in a fast way. Let a, b and c be the vertices of
the triangle T ′ and p′ the orthogonal projection of the sample point
p on the plane of T ′. If T ′ has an obtuse angle, let c denote the
vertex at that angle. Let also p denote the vector from the origin to
p and ab the vector from a to b. As explained in section 2.2, it is
necessary to determine if p′ is inside T ′ and if not, which side is the
closest. To do this we consider the three planes through the sides of
T ′ and perpendicular to T ′. The orientation of the plane through
the ab side is given by the normal vector nab, perpendicular to
ab and parallel to the plane of T ′. Analogously, the other two
perpendicular planes have normal vectors nac and nbc. For the
general case where T ′ can have an obtuse angle we consider also
the plane perpendicular to bc through c. With these four planes
and their intersections we can define five regions of the space, as
depicted in figure 5. If T ′ has an obtuse angle �acb, any p in region
3 is closest to the ac side. Otherwise any p in region 3 is closest
to the bc side and there is no need to distinguish between regions
2 and 3.
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Figure 5: Top view of a triangle T ′, the side normals and the five
regions (delimited by the solid lines) used to efficiently calculate
the point to triangle distance.

The following procedure, requiring no more than three scalar
products and three comparisons, can be applied to determine to
which of the above mentioned regions the sample point p belongs.
If p.nab is greater than a.nab, p is in region 1. Otherwise, if p.nbc

is greater than b.nbc, p is in region 2 or 3. Otherwise, if p.nac is
greater than c.nac, p is in region 4 and else in 5. If required,
the scalar product cp.cb determines if p is in region 2 or 3. All
the quantities, such as nab and a.nab, that do not depend on p
are precalculated for each triangle before starting the Hausdorff
distance computation, since the distance to any given triangle is
computed many times for different sample points.

Now that we know to which region p belongs, we need to cal-
culate the distance. If in region 5, p′ ∈ T ′ and thus the distance
is the point to plane distance. Otherwise we need to determine the
distance from p to one of the sides of T ′. For example, for region
1 we must determine the distance from p to the ab side. Let p′′ be
the orthogonal projection of p on the ab line. If p′′ is between a
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and b, the distance is simply the point to line distance. Otherwise
it is the distance to the closest point, either a or b. This can be de-
termined by evaluating ap.ab. If negative, a is the closest point.
If positive and larger than ‖ab‖2, b is the closest point. Otherwise
we compute the point to line distance. For the other regions (2, 3
and 4) the procedure is analogous.

3.3. Results

After reading the two input models M and M′, Mesh first outputs
some simple information about them (number of triangles and ver-
tices and bounding box diagonal length) as well as their topolog-
ical nature (2-manifold, orientable, closed and number of disjoint
parts). Then the forward Hausdorff distance is evaluated and the
minimum, maximum, mean and root-mean-square error distances
are reported. Optionally the backward and symmetric distances
can also be evaluated. In addition, an OpenGLTM graphical user
interface (GUI) displays the distribution of the Hausdorff distance
on the model M and allows to interactively perform a visual com-
parison of the shape of the two models.

4. ANALYSIS

The Mesh tool has been evaluated on a variety of models, with
good results. Figure 6 shows the results for the root-mean-square
forward and backward distances, for two models: horse and lion.
The horse model has 96966 triangles originally and has been sim-
plified to 500 triangles using QSlim [4]. The lion model is a B-
Spline parametric model that has been tessellated to 50820 and
7490 triangles. As expected, the sampling step δ plays a role in
the precision of the measured distance. The measure is stable for
values of δ below 0.5% or 0.4% of the bounding box diagonal.
The difference between the forward and backward distances can
also be observed, which demonstrates the need for a symmetrical
metric. Another important point is that, for large δ, measures from
a coarse to a fine model are less precise than the opposite. This can
be explained by the fact that for models with a large number of tri-
angles, a non-negligible proportion of the triangles are not sampled
if a large δ is used, and thus relevant details in the models’ shape
are missed.

Figure 7 compares the execution time of Mesh and Metro
(version 2.5) on a Silicon Graphics Onyx computer with R10000
194MHz MIPS processors. It can be easily observed that Mesh is
between three to four times faster. In addition, the memory foot-
print is in general twice smaller. The figure also shows a limitation
of Metro. If the sampled model has a relatively large number of
faces, it is not possible to use a small number of samples. With
Mesh it is possible to use a large δ, and thus a small number of
samples, to get a rough distance estimate very quickly.

5. CONCLUSION

In this paper the Hausdorff distance and its application to distance
measurements between 3D models have been introduced. Further-
more, Mesh, an efficient implementation of the Hausdorff distance
for triangular meshes is presented and evaluated. The compar-
isons with Metro [3], a similar tool, show that Mesh is very fast,
memory efficient and provides stable distance measures. Mesh is
publicly available in source-code form and can be obtained on the
World-Wide-Web at http://mesh.epfl.ch.
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Figure 6: Evolution of the root-mean-square distance measure as a
function of the sampling step δ. Forward and backward distances
are reported. For each successive δ value, from left to right, the
number of sample points is roughly halved.
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Figure 7: Comparison of the execution times of Mesh and Metro,
as a function of the number of sample points.
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